2015
Authors
Konadu D.D.; Mourão Z.S.; Allwood J.M.; Richards K.S.; Kopec G.M.; McMahon R.A.; Fenner R.A.;
Publication
Global Environmental Change
Abstract
Energy system pathways which are projected to deliver minimum possible deployment cost, combined with low Greenhouse Gas (GHG) emissions, are usually considered as 'no-regrets' options. However, the question remains whether such energy pathways present 'no-regrets' when also considering the wider environmental resource impacts, in particular those on land and water resources. This paper aims to determine whether the energy pathways of the UK's Carbon Plan are environmental "no-regrets" options, defined in this study as simultaneously exhibiting low impact on land and water services resulting from resource appropriation for energy provision. This is accomplished by estimating the land area and water abstraction required by 2050 under the four pathways of the Carbon Plan with different scenarios for energy crop composition, yield, and power station locations. The outcomes are compared with defined limits for sustainable land appropriation and water abstraction.The results show that of the four Carbon Plan pathways, only the "Higher Renewables, more energy efficiency" pathway is an environmental "no-regrets" option, and that is only if deployment of power stations inland is limited. The study shows that policies for future low-carbon energy systems should be developed with awareness of wider environmental impacts. Failing to do this could lead to a setback in achieving GHG emission reductions goals, because of unforeseen additional competition between the energy sector and demand for land and water services in other sectors.
2015
Authors
Konadu D.D.; Mourão Z.S.; Allwood J.M.; Richards K.S.; Kopec G.; McMahon R.; Fenner R.;
Publication
Energy Policy
Abstract
The UK's 2008 Climate Change Act sets a legally binding target for reducing territorial greenhouse gas emissions by 80% by 2050, relative to 1990 levels. Four pathways to achieve this target have been developed by the Department of Energy and Climate Change, with all pathways requiring increased us of bioenergy. A significant amount of this could be indigenously sourced from crops, but will increased domestic production of energy crops conflict with other agricultural priorities?To address this question, a coupled analysis of the UK energy system and land use has been developed. The two systems are connected by the production of bioenergy, and are projected forwards in time under the energy pathways, accounting for various constraints on land use for agriculture and ecosystem services. The results show different combinations of crop yield and compositions for the pathways lead to the appropriation of between 7% and 61% of UK's agricultural land for bioenergy production. This could result in competition for land for food production and other land uses, as well as indirect land use change in other countries due to an increase in bioenergy imports. Consequently, the potential role of bioenergy in achieving UK emissions reduction targets may face significant deployment challenges.
2015
Authors
Bernardo, H; Oliveira, F; Serrano, L;
Publication
Renewable Energy and Power Quality Journal
Abstract
This paper aims at presenting the main results of an energy audit performed to a gypsum production plant, in Portugal, which due to the amount of energy consumed must comply with the Portuguese program SGCIE (Intensive Energy Consumption Management System). The program was created in 2008 to promote energy efficiency and energy consumption monitoring in intensive energy consuming facilities (energy consumption higher than 500 toe per year). Facilities operators are required to perform energy audits and take actions to draw up an action plan for energy efficiency, establishing targets for energy consumption reduction and greenhouse gases emissions indexes. An energy audit was carried out to identify potential energy conservation measures for improving energy efficiency, and also typical energy consumption patterns, sector/equipment load profiles and thermal equipment performance. This tool gives managers the information to support decision making on improving energy performance and reducing greenhouse gas emissions. A number of tangible targets and measures were devised and set to be implemented in the next few years. Results show that there is a considerable potential for reduction in the energy consumption and greenhouse gases emissions of gypsum manufacturing plants. Here, as elsewhere in the industrial sector, energy efficiency can only be achieved through a continuous energy monitoring and management system.
2015
Authors
Ridzuan M.I.M.; Hernando-Gil I.; Djokic S.; Langella R.; Testa A.;
Publication
IEEE PES Innovative Smart Grid Technologies Conference Europe
Abstract
This paper is part one of a two-part series discussing how Regulator requirements for continuity of supply could be incorporated in the reliability analysis of existing electricity networks and future 'smart grids'. The paper uses examples of overall and guaranteed standards of performance from the UK and Italy, specifying requirements that network operators should satisfy with respect to excessively long and/or too frequent supply interruptions. Besides the relevant Regulator requirements, this paper presents input data, parameters and models required for comprehensive reliability assessment, while Part 2 paper presents scenarios and results for test network based on both analytical and probabilistic reliability procedures.
2015
Authors
Ridzuan M.I.M.; Hernando-Gil I.; Djokic S.; Langella R.; Testa A.;
Publication
IEEE PES Innovative Smart Grid Technologies Conference Europe
Abstract
This is the second paper in a two-part series discussing how Regulator requirements for continuity of supply could be incorporated in the reliability analysis of existing electricity networks and future 'smart grids'. Part 1 paper presents input data, parameters and models required for a comprehensive assessment of system reliability performance, including an overview of the overall and guaranteed standards of performance in the UK and Italy. This paper presents scenarios and results of both analytical and probabilistic reliability assessment procedures for the test network introduced in Part 1 paper.
2014
Authors
Costa, IC; da Rosa, MA; Carvalho, LM; Soares, FJ; Bremermann, L; Miranda, V;
Publication
2014 INTERNATIONAL CONFERENCE ON PROBABILISTIC METHODS APPLIED TO POWER SYSTEMS (PMAPS)
Abstract
Stationary batteries are currently seen as an interesting solution to deal with the variability of the renewable energy sources. In the same way as other types of storage, e.g. pumped-hydro units, this new type of storage equipment can improve the use of Renewable Energy Sources (RES). Additionally, the stationary batteries location in the grid is not as physically constrained as other storage systems and can be optimally selected to maximize its overall benefits. This paper proposes a new methodology to represent the unique stochastic behavior of stationary batteries while integrated into an electrical power system. This methodology includes not only the technical restrictions of this type of storage system but also how its operation strategy affects its lifetime. The methodology was tested on a small test system, which is based on the IEEE-RTS 79, using sequential Monte Carlo simulation as its core to accurately reproduce the chronology of events of stationary batteries. The results of the simulation are focused on the potential impacts of these storage devices not only in terms of renewable energy used but also in the adequacy of supply.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.