2025
Authors
Fernandes, FS; Bessa, RJ; Lopes, JP;
Publication
JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY
Abstract
In a high-risk sector, such as power system, transparency and interpretability are key principles for effectively deploying artificial intelligence (AI) in control rooms. Therefore, this paper proposes a novel methodology, the evolving symbolic model (ESM), which is dedicated to generating highly interpretable data-driven models for dynamic security assessment (DSA), namely in system security classification (SC) and the definition of preventive control actions. The ESM uses simulated annealing for a data-driven evolution of a symbolic model template, enabling different cooperative learning schemes between humans and AI. The Madeira Island power system is used to validate the application of the ESM for DSA. The results show that the ESM has a classification accuracy comparable to pruned decision trees (DTs) while boasting higher global inter-pretability. Moreover, the ESM outperforms an operator-defined expert system and an artificial neural network in defining preventive control actions.
2025
Authors
Tavares, B; Soares, F; Pereira, J; Gouveia, C;
Publication
2025 21ST INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET, EEM
Abstract
Flexibility markets are emerging across Europe to improve the efficiency and reliability of distribution networks. This paper presents a methodology that integrates local flexibility markets into network maintenance scheduling, optimizing the process by contracting flexibility to avoid technical issues under the topology defined to operate the network during maintenance. A meta-heuristic approach, Evolutionary Particle Swarm Optimization (EPSO), is used to determine the optimal network topology.
2025
Authors
Jorge Pereira; Clara Gouveia; Renan Portelinha; Paulo Viegas; José Simões; Pedro Silva; Susana Dias; Alexandre Rodrigues; Ana Pereira; Joana Faria; Gabriel Pino;
Publication
IET conference proceedings.
Abstract
2025
Authors
Paulo Viegas; Diego Bairrão; Luís Gonçalves; Jorge Pereira; Leonel Carvalho; José Simões; Pedro Silva; Susana Dias;
Publication
IET conference proceedings.
Abstract
2025
Authors
Fernandes, FS; Lopes, JP; Moreira, CL;
Publication
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS
Abstract
This work proposes a robust methodology for the location and sizing of grid forming (GFM) converters that simultaneously considers the solution costs and the security gains while accounting for the TSO nonlinear cost-security sensitivity. Such methodology, which includes a collection of techniques to reduce the problem dimensionality, formulates the placement problem as a non-linear multi-criteria decision support problem and uses a solution-seeking algorithm based on Bayesian Optimisation to determine the solution. To ease comprehension, a modified version of the IEEE 39 Test System is used as a case study throughout the method's detailed explanation and application example. A sensitivity analysis of the GFM converter's over-current capacity in the solution of the formulated placement problem is also performed. The results show that the proposed method is successful in finding solutions with physical meaning and that respect the decision agent preferences.
2025
Authors
Gonçalves, C; Bessa, RJ; Teixeira, T; Vinagre, J;
Publication
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY
Abstract
Accurate power forecasting from renewable energy sources (RES) is crucial for integrating additional RES capacity into the power system and realizing sustainability goals. This work emphasizes the importance of integrating decentralized spatio-temporal data into forecasting models. However, decentralized data ownership presents a critical obstacle to the success of such spatio-temporal models, and incentive mechanisms to foster data-sharing need to be considered. The main contributions are a) a comparative analysis of the forecasting models, advocating for efficient and interpretable spline LASSO regression models, and b) a bidding mechanism within the data/analytics market to ensure fair compensation for data providers and enable both buyers and sellers to express their data price requirements. Furthermore, an incentive mechanism for time series forecasting is proposed, effectively incorporating price constraints and preventing redundant feature allocation. Results show significant accuracy improvements and potential monetary gains for data sellers. For wind power data, an average root mean squared error improvement of over 10% was achieved by comparing forecasts generated by the proposal with locally generated ones.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.