Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CPES

2024

Foundation models for the electric power grid

Authors
Hamann, HF; Gjorgiev, B; Brunschwiler, T; Martins, LSA; Puech, A; Varbella, A; Weiss, J; Bernabe-Moreno, J; Massé, AB; Choi, SL; Foster, I; Hodge, BM; Jain, R; Kim, K; Mai, V; Mirallès, F; De Montigny, M; Ramos-Leaños, O; Suprême, H; Xie, L; Youssef, ES; Zinflou, A; Belyi, A; Bessa, RJ; Bhattarai, BP; Schmude, J; Sobolevsky, S;

Publication
JOULE

Abstract
Foundation models (FMs) currently dominate news headlines. They employ advanced deep learning architectures to extract structural information autonomously from vast datasets through self-supervision. The resulting rich representations of complex systems and dynamics can be applied to many downstream applications. Therefore, advances in FMs can find uses in electric power grids, challenged by the energy transition and climate change. This paper calls for the development of FMs for electric grids. We highlight their strengths and weaknesses amidst the challenges of a changing grid. It is argued that FMs learning from diverse grid data and topologies, which we call grid foundation models (GridFMs), could unlock transformative capabilities, pioneering a new approach to leveraging AI to redefine how we manage complexity and uncertainty in the electric grid. Finally, we discuss a practical implementation pathway and road map of a GridFM-v0, a first GridFM for power flow applications based on graph neural networks, and explore how various downstream use cases will benefit from this model and future GridFMs.

2024

Improving Very Short-Term Wind Power Predictability by Strategically Placing Weather Stations

Authors
Klyagina O.; Camara D.P.; Bessa R.J.;

Publication
Proceedings - 24th EEEIC International Conference on Environment and Electrical Engineering and 8th I and CPS Industrial and Commercial Power Systems Europe, EEEIC/I and CPS Europe 2024

Abstract
This study aims to improve the accuracy of wind power generation forecasting by selecting the potential locations for weather stations, which serve as crucial data sources for wind predictions. The proposed method is based on using Shapley values. First, they are assigned to stations that are already available in the region based on their contribution to forecasting error. Second, the values are interpolated to cover the area of interest. We test the hypothesis that taking weather measurements in areas with negative Shapley values leads to a decrease in the error of forecasting the volume of wind power generation. We estimate the method's impact on forecasting error by using long short-term memory neural network and linear regression with quadratic penalization. The results of this proof-of-concept study indicate that it is possible to improve the short-term wind power forecasts using additional weather observations in the selected regions. The future research should be dedicated to the expansion of the case study area to other locations, including offshore power plants.

2024

Enhancing the European power system resilience with a recommendation system for voluntary demand response

Authors
Silva, CAM; Bessa, RJ; Andrade, JR; Coelho, FA; Costa, RB; Silva, CD; Vlachodimitropoulos, G; Stavropoulos, D; Chadoulos, S; Rua, DE;

Publication
ISCIENCE

Abstract
Climate change, geopolitical tensions, and decarbonization targets are bringing the resilience of the European electric power system to the forefront of discussion. Among various regulatory and technological solutions, voluntary demand response can help balance generation and demand during periods of energy scarcity or renewable energy generation surplus. This work presents an open data service called Interoperable Recommender that leverages publicly accessible data to calculate a country-specific operational balancing risk, providing actionable recommendations to empower citizens toward adaptive energy consumption, considering interconnections and local grid constraints. Using semantic interoperability, it enables third- party services to enhance energy management and customize applications to consumers. Real-world pilots in Portugal, Greece, and Croatia with over 300 consumers demonstrated the effectiveness of providing signals across diverse contexts. For instance, in Portugal, 7% of the hours included actionable recommendations, and metering data revealed a consumption decrease of 4% during periods when consumers were requested to lower consumption.

2024

Energy-efficient Manufacturing Scheduling of Footwear Industries with Onsite Photovoltaic Energy and Storage

Authors
Gomes, I; Paulos, J; Bessa, RJ; Sousa, M; Rebelo, R;

Publication
2024 INTERNATIONAL CONFERENCE ON SMART ENERGY SYSTEMS AND TECHNOLOGIES, SEST 2024

Abstract
The footwear industry is energy-intensive and, consequently, a source of large amounts of greenhouse gas emissions every year. Issues related to climate change and growing conflicts on a global scale that impact the prices of raw materials and energy prices have led companies in the footwear industry to take actions to mitigate these impacts. Among these actions is the growing focus on producing its energy from energy systems based on renewable sources and battery energy storage units. This paper addresses the energy-efficient manufacturing scheduling in footwear industries with onsite energy production from a photovoltaic system with batteries. The problem is formulated as a mixed integer linear programming problem. Different objectives are presented, depending on the priorities of the entity that owns the footwear factory, namely, minimizing operation costs, minimizing CO2 emissions, or both. The case study is footwear factory located in Portugal that uses a manufacturing process based on injection molding. The results show the effectiveness of the proposed approach, with active demand side management playing a fundamental role in shifting periods of higher energy consumption to periods of lower prices or lower CO2 emissions. Also, Pareto fronts are depicted to make the trade-off between CO2 emissions and operation costs. As expected, the reduction of CO2 emissions promotes an increase on operation costs. Furthermore, a sensitivity analysis is carried out on the increase in photovoltaic capacity and battery capacity. The results show that increasing photovoltaic and battery capacity promotes reductions in costs up to 30% and in the emissions up to 37%.

2024

Data-driven Approach for High Loss Detection in LV Networks

Authors
Paulos, JP; Macedo, P; Bessa, R; Fidalgo, JN; Oliveira, J;

Publication
2024 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES EUROPE, ISGT EUROPE

Abstract
This article proposes a methodology for high loss detection in LV network, based on a very small set of commonly available data/metadata from networks connected to an MV/LV substation. The approach is based on a combination of predictors from several distinct categories, including network data, metadata, and measured smart meter data. Several independent groups of unranked real networks were simulated, and it was possible to find the top ten networks with the highest level of losses with a very satisfactory success rate (76% to 98%), depending on selected groupings folds. Due to the impracticability of analyzing all LV networks, the identification of the highest loss ones is essential for the definition of loss reduction planning since, with this list filtering, it is possible to determine with a good degree of certainty which networks require maintenance or upgrade.

2024

A Pioneering Roadmap for ML-Driven Algorithmic Advancements in Electrical Networks

Authors
Cremer, JL; Kelly, A; Bessa, RJ; Subasic, M; Papadopoulos, PN; Young, S; Sagar, A; Marot, A;

Publication
2024 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES EUROPE, ISGT EUROPE

Abstract
Advanced control, operation, and planning tools of electrical networks with ML are not straightforward. 110 experts were surveyed to show where and how ML algorithms could advance. This paper assesses this survey and research environment. Then, it develops an innovation roadmap that helps align our research community with a goal-oriented realisation of the opportunities that AI upholds. This paper finds that the R&D environment of system operators (and the surrounding research ecosystem) needs adaptation to enable faster developments with AI while maintaining high testing quality and safety. This roadmap serves system operators, academics, and labs advancing next-generation electrical network tools.

  • 13
  • 346