2020
Authors
Senna, PP; Almeida, AH; Barros, AC; Bessa, RJ; Azevedo, AL;
Publication
Procedia Manufacturing
Abstract
The modern digital era is characterized by a plethora of emerging technologies, methodologies and techniques that are employed in the manufacturing industries with intent to improve productivity, to optimize processes and to reduce operational costs. Yet, algorithms and methodological approaches for improvement of energy consumption and environmental impact are not integrated with the current operational and planning tools used by manufacturing companies. One possible reason for this is the difficulty in bridging the gap between the most advanced energy related ICT tools, developed within the scope of the industry 4.0 era, and the legacy systems that support most manufacturing operational and planning processes. Consequently, this paper proposes a conceptual architecture model for a digital energy management platform, which is comprised of an IIoT-based platform, strongly supported by energy digital twin for interoperability and integrated with AI-based energy data-driven services. This conceptual architecture model enables companies to analyse their energy consumption behaviour, which allows for the understanding of the synergies among the variables that affect the energy demand, and to integrate this energy intelligence with their legacy systems in order to achieve a more sustainable energy demand. © 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/) Peer-review under responsibility of the scientific committee of the FAIM 2021.
2020
Authors
Mello, J; Villar, J; Bessa, RJ; Lopes, M; Martins, J; Pinto, M;
Publication
International Conference on the European Energy Market, EEM
Abstract
This paper proposes a Local Energy Market using a P2P blockchain-powered marketplace where agents bilaterally trade energy after the consumption and production period, and not before, as usual in electricity market design. The EU and MIBEL regulatory framework for Renewable Energy Communities potentially creates space for such a market, but some improvements in the settlement procedures and agent's participation must be met. © 2020 IEEE.
2020
Authors
Giebel, G; Shaw, W; Frank, H; Pinson, P; Draxl, C; Zack, J; Möhrlen, C; Kariniotakis, G; Bessa, R;
Publication
Abstract
2020
Authors
Kariniotakis, G; Camal, S; Bessa, R; Pinson, P; Giebel, G; Libois, Q; Legrand, R; Lange, M; Wilbert, S; Nouri, B; Neto, A; Verzijlbergh, R; Sauba, G; Sideratos, G; Korka, E; Petit, S;
Publication
Abstract
2020
Authors
Tavares, B; Soares, FJ;
Publication
ELECTRIC POWER SYSTEMS RESEARCH
Abstract
The increasing integration of Distributed Energy Resources (DER) in electricity networks has required an improvement in the network management procedures. While the operation paradigm is evolving and adapting to the new network features, the planning approach is rather inefficient as network assets are usually oversized to meet the worst-case scenario. In this regard, this paper presents an innovative methodology that integrates the potential flexibility of DER into the planning process, in an attempt to bridge the gap between current network operation approaches and the planning methods. It includes an analysis of future scenarios, providing different reinforcement plans considering the realistic network operation for those scenarios. The proposed optimal design of the reinforcement plans has two complementary processes: First to optimize flexible resources in their owner's perspective and second to reschedule the flexible resources' operation when the DSO needs to solve technical problems. The model has been tested in a typical Portuguese medium voltage network using future scenarios of DER integration from ENTSO-E. The results conclude that the proposed methodology leads to cost-effective solutions, which provide a better use of flexible resources, deferring high capital investments in network reinforcement.
2020
Authors
Iria, J; Fonseca, N; Cassola, F; Barbosa, A; Soares, F; Coelho, A; Ozdemir, A;
Publication
ENERGY AND BUILDINGS
Abstract
Office buildings consume a significant amount of energy that can be reduced through behavioral change. Gamification offers the means to influence the energy consumption related to the activities of the office users. This paper presents a new mobile gamification platform to foster the adoption of energy efficient behaviors in office buildings. The gamification platform is a mobile application with multiple types of dashboards, such as (1) an information dashboard to increase the awareness of the users about their energy consumption and footprint, (2) a gaming dashboard to engage users in real-time energy efficiency competitions, (3) a leaderboard to promote peer competition and comparison, and (4) a message dashboard to send tailor-made messages about energy efficiency opportunities. The engagement and gamification strategies embedded in these dashboards exploit economic, environmental, and social motivations to stimulate office users to adopt energy efficient behaviors without compromising their comfort and autonomy levels. The gamification platform was demonstrated in an office building environment. The results suggest electricity savings of 20%. © 2020 Elsevier B.V.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.