2025
Authors
Caetano, F; Carvalho, P; Mastralexi, C; Cardoso, JS;
Publication
IEEE ACCESS
Abstract
Anomaly Detection has been a significant field in Machine Learning since it began gaining traction. In the context of Computer Vision, the increased interest is notorious as it enables the development of video processing models for different tasks without the need for a cumbersome effort with the annotation of possible events, that may be under represented. From the predominant strategies, weakly and semi-supervised, the former has demonstrated potential to achieve a higher score in its analysis, adding to its flexibility. This work shows that using temporal ranking constraints for Multiple Instance Learning can increase the performance of these models, allowing the focus on the most informative instances. Moreover, the results suggest that altering the ranking process to include information about adjacent instances generates best-performing models.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.