Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by HumanISE

2025

Theoretical Model Validation of the Multisensory Role on Subjective Realism, Presence and Involvement in Immersive Virtual Reality

Authors
Gonçalves, G; Peixoto, B; Melo, M; Bessa, M;

Publication
COMPUTER GRAPHICS FORUM

Abstract
With the consistent adoption of iVR and growing research on the topic, it becomes fundamental to understand how the perception of Realism plays a role in the potential of iVR. This work puts forwards a hypothesis-driven theoretical model of how the perception of each multisensory stimulus (Visual, Audio, Haptic and Scent) is related to the perception of Realism of the whole experience (Subjective Realism) and, in turn, how this Subjective Realism is related to Involvement and Presence. The model was validated using a sample of 216 subjects in a multisensory iVR experience. The results indicated a good model fit and provided evidence on how the perception of Realism of Visual, Audio and Scent individually is linked to Subjective Realism. Furthermore, the results demonstrate strong evidence that Subjective Realism is strongly associated with Involvement and Presence. These results put forwards a validated questionnaire for the perception of Realism of different aspects of the virtual experience and a robust theoretical model on the interconnections of these constructs. We provide empirical evidence that can be used to optimise iVR systems for Presence, Involvement and Subjective Realism, thereby enhancing the effectiveness of iVR experiences and opening new research avenues.

2025

A Framework for Adaptive Recommendation in Online Environments

Authors
Rogério Xavier De Azambuja; A. Jorge Morais; Vítor Filipe;

Publication
Artificial Intelligence and Applications

Abstract
Recent advancements in deep learning and large language models (LLMs) have led to the development of innovative technologies that enhance recommender systems. Different heuristics, architectures, and techniques for filtering information have been proposed to obtain successful computational models for the recommendation problem; however, several issues must be addressed in online environments. This research focuses on a specific type of recommendation, which combines sequential recommendation with session-based recommendation. The goal is to solve the complex next-item recommendation problem in Web applications, using the wine domain as a case study. This paper describes a framework developed to provide adaptive recommendations by rethinking the initial data modeling to better understand users' dynamic taste profiles. Three main contributions are presented: (a) a novel dataset of wines called X-Wines; (b) an updated recommendation model named X-Model4Rec – eXtensible Model for Recommendation, which utilizes attention and transformer mechanisms central to LLMs; and (c) a collaborative Web platform designed to support adaptive wine recommendations for users in an online environment. The results indicate that the proposed framework can enhance recommendations in online environments and encourage further scientific exploration of this topic.   Received: 15 December 2024 | Revised: 12 June 2025 | Accepted: 30 June 2025   Conflicts of Interest The authors declare that they have no conflicts of interest to this work.   Data Availability Statement The data that support the findings of this study are openly available in X-Wines Research Project at https://sites.google.com/farroupilha.ifrs.edu.br/xwines.   Author Contribution Statement Rogério Xavier de Azambuja: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Resources, Data curation, Writing – original draft, Writing – review & editing, Visualization, and Project administration. A. Jorge Morais: Conceptualization, Methodology, Validation, Formal analysis, Data curation, Writing – review & editing, Visualization, Supervision, and Project administration. Vítor Filipe: Conceptualization, Methodology, Validation, Formal analysis, Data curation, Writing – review & editing, Visualization, and Project administration.

2025

Enhancing Recruitment with LLMs and Chatbots

Authors
Novais, L; Rocio, V; Morais, J;

Publication
DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE, SPECIAL SESSIONS II, 21ST INTERNATIONAL CONFERENCE

Abstract
Traditional approaches in the competitive recruitment landscape frequently encounter difficulties in effectively identifying exceptional applicants, resulting in delays, increased expenses, and biases. This study proposes the utilisation of contemporary technologies such as Large Language Models (LLMs) and chatbots to automate the process of resume screening, thereby diminishing prejudices and enhancing communication between recruiters and candidates. Algorithms based on LLM can greatly transform the process of screening by improving both its speed and accuracy. By integrating chatbots, it becomes possible to have personalised interactions with candidates and streamline the process of scheduling interviews. This strategy accelerates the hiring process while maintaining principles of justice and ethics. Its objective is to improve algorithms and procedures to meet changing requirements and enhance the competitive advantage of talent acquisition within organisations.

2025

Beyond Physical Boundaries: Assessing Managers' Intentions to Adopt Virtual Reality Technology in Wine Tourism

Authors
Sousa, N; Alén, E; Losada, N; Melo, M;

Publication
TOURISM & MANAGEMENT STUDIES

Abstract
Virtual Reality (VR) has been recognised as a promising technology for enhancing the tourist experience. However, little is known about the intention of tourism business managers to adopt VR for leisure purposes. In this context, this study aims to explore this intention by interviewing managers in the sector. This process allowed us to examine their perceptions regarding the use of this technology in their business models. The results revealed that the perceived usefulness of VR is a key factor in its adoption. In addition, managers recognise the value of VR as a complement to the tourist visit, and their intention to adopt it increases when a positive return on investment is anticipated. This approach offers a unique perspective on the main factors influencing technology adoption in this context, broadens the understanding of VR applications in wine tourism, and highlights its potential to transform the visitor experience and drive growth in the sector through innovative business models.

2025

Evaluating Dense Model-based Approaches for Multimodal Medical Case Retrieval

Authors
Catarina Pires; Sérgio Nunes; Luís Filipe Teixeira;

Publication
Information Retrieval Research

Abstract
Medical case retrieval plays a crucial role in clinical decision-making by enabling healthcare professionals to find relevant cases based on patient records, diagnostic images, and textual descriptions. Given the inherently multimodal nature of medical data, effective retrieval requires models that can bridge the gap between different modalities. Traditional retrieval approaches often rely on unimodal representations, limiting their ability to capture cross-modal relationships. Recent advances in dense model-based techniques have shown promise in overcoming these limitations by encoding multimodal information into a shared latent space, facilitating retrieval based on semantic similarity. This paper investigates the potential of dense models to enhance multimodal search systems. We evaluate various dense model-based approaches to assess which model characteristics have the greatest impact on retrieval effectiveness, using the medical case-based retrieval task from ImageCLEFmed 2013 as a benchmark. Our findings indicate that different dense model approaches substantially impact retrieval effectiveness, and that applying the CombMAX fusion methodto combine their output results further improves effectiveness. Extending context length, however, yielded mixed results depending on the input data. Additionally, domain-specific models—those trained on medical data—outperformed general models trained on broad, non-specialized datasets within their respective fields. Furthermore, when text is the dominant information source, text-only models surpassed multimodal models

2025

Zero-Shot and Hybrid Strategies for Tetun Ad-Hoc Text Retrieval

Authors
Jesus, G; Singh, SAK; Nunes, S; Yates, A;

Publication
PROCEEDINGS OF THE 2025 INTERNATIONAL ACM SIGIR CONFERENCE ON INNOVATIVE CONCEPTS AND THEORIES IN INFORMATION RETRIEVAL, ICTIR 2025

Abstract
Dense retrieval models are generally trained using supervised learning approaches for representation learning, which require a labeled dataset (i.e., query-document pairs). However, training such models from scratch is not feasible for most languages, particularly under-resourced ones, due to data scarcity and computational constraints. As an alternative, pretrained dense retrieval models can be fine-tuned for specific downstream tasks or applied directly in zero-shot settings. Given the lack of labeled data for Tetun and the fact that existing dense retrieval models do not currently support the language, this study investigates their application in zero-shot, out-of-distribution scenarios. We adapted these models to Tetun documents, producing zero-shot embeddings, to evaluate their performance across various document representations and retrieval strategies for the ad-hoc text retrieval task. The results show that most pretrained monolingual dense retrieval models outperformed their multilingual counterparts in various configurations. Given the lack of dense retrieval models specialized for Tetun, we combine Hiemstra LM with ColBERTv2 in a hybrid strategy, achieving a relative improvement of +2.01% in P@10, +4.24% in MAP@10, and +2.45% in NDCG@10 over the baseline, based on evaluations using 59 queries and up to 2,000 retrieved documents per query. We propose dual tuning parameters for the score fusion approach commonly used in hybrid retrieval and demonstrate that enriching document titles with summaries generated by a large language model (LLM) from the documents' content significantly enhances the performance of hybrid retrieval strategies in Tetun. To support reproducibility, we publicly release the LLM-generated document summaries and run files.

  • 11
  • 697