Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by LIAAD

2023

WINTENDED: WINdowed TENsor decomposition for Densification Event Detection in time-evolving networks

Authors
Fernandes, S; Fanaee T, H; Gama, J; Tisljaric, L; Smuc, T;

Publication
MACHINE LEARNING

Abstract
Densification events in time-evolving networks refer to instants in which the network density, that is, the number of edges, is substantially larger than in the remaining. These events can occur at a global level, involving the majority of the nodes in the network, or at a local level involving only a subset of nodes.While global densification events affect the overall structure of the network, the same does not hold in local densification events, which may remain undetectable by the existing detection methods. In order to address this issue, we propose WINdowed TENsor decomposition for Densification Event Detection (WINTENDED) for the detection and characterization of both global and local densification events. Our method combines a sliding window decomposition with statistical tools to capture the local dynamics of the network and automatically find the irregular behaviours. According to our experimental evaluation, WINTENDED is able to spot global densification events at least as accurately as its competitors, while also being able to find local densification events, on the contrary to its competitors.

2023

Social network analytics and visualization: Dynamic topic-based influence analysis in evolving micro-blogs

Authors
Tabassum, S; Gama, J; Azevedo, PJ; Cordeiro, M; Martins, C; Martins, A;

Publication
EXPERT SYSTEMS

Abstract
Influence Analysis is one of the well-known areas of Social Network Analysis. However, discovering influencers from micro-blog networks based on topics has gained recent popularity due to its specificity. Besides, these data networks are massive, continuous and evolving. Therefore, to address the above challenges we propose a dynamic framework for topic modelling and identifying influencers in the same process. It incorporates dynamic sampling, community detection and network statistics over graph data stream from a social media activity management application. Further, we compare the graph measures against each other empirically and observe that there is no evidence of correlation between the sets of users having large number of friends and the users whose posts achieve high acceptance (i.e., highly liked, commented and shared posts). Therefore, we propose a novel approach that incorporates a user's reachability and also acceptability by other users. Consequently, we improve on graph metrics by including a dynamic acceptance score (integrating content quality with network structure) for ranking influencers in micro-blogs. Additionally, we analysed the topic clusters' structure and quality with empirical experiments and visualization.

2023

The InBIO barcoding initiative database: DNA barcodes of Iberian Trichoptera, documenting biodiversity for freshwater biomonitoring in a Mediterranean hotspot

Authors
Pauperio, J; Gonzalez, LM; Martinez, J; Gonzalez, M; Martins, FM; Verissimo, J; Puppo, P; Pinto, J; Chaves, C; Pinho, CJ; Grosso-Silva, JM; Quaglietta, L; Silva, TL; Sousa, P; Alves, PC; Fonseca, N; Beja, P; Ferreira, S;

Publication
BIODIVERSITY DATA JOURNAL

Abstract
BackgroundThe Trichoptera are an important component of freshwater ecosystems. In the Iberian Peninsula, 380 taxa of caddisflies are known, with nearly 1/3 of the total species being endemic in the region. A reference collection of morphologically identified Trichoptera specimens, representing 142 Iberian taxa, was constructed. The InBIO Barcoding Initiative (IBI) Trichoptera 01 dataset contains records of 438 sequenced specimens. The species of this dataset correspond to about 37% of Iberian Trichoptera species diversity. Specimens were collected between 1975 and 2018 and are deposited in the IBI collection at the CIBIO (Research Center in Biodiversity and Genetic Resources, Portugal) or in the collection Marcos A. Gonzalez at the University of Santiago de Compostela (Spain).New informationTwenty-nine species, from nine different families, were new additions to the Barcode of Life Data System (BOLD). A success identification rate of over 80% was achieved when comparing morphological identifications and DNA barcodes for the species analysed. This encouraging step advances incorporation of informed Environmental DNA tools in biomonitoring schemes, given the shortcomings of morphological identifications of larvae and adult Caddisflies in such studies. DNA barcoding was not successful in identifying species in six Trichoptera genera: Hydropsyche (Hydropsychidae), Athripsodes (Leptoceridae), Wormaldia (Philopotamidae), Polycentropus (Polycentropodidae) Rhyacophila (Rhyacophilidae) and Sericostoma (Sericostomatidae). The high levels of intraspecific genetic variability found, combined with a lack of a barcode gap and a challenging morphological identification, rendered these species as needing additional studies to resolve their taxonomy.

2023

Idioblasts accumulating anticancer alkaloids in Catharanthus roseus leaves are a unique cell type

Authors
Guedes, JG; Ribeiro, R; Carqueijeiro, I; Guimaraes, AL; Bispo, C; Archer, J; Azevedo, H; Fonseca, NA; Sottomayor, M;

Publication

Abstract
Catharanthus roseus leaves produce a range of monoterpenoid indole alkaloids (MIAs) that include low levels of the anticancer drugs vinblastine and vincristine. The MIA pathway displays a complex architecture spanning different subcellular and cell-type localizations and is under complex regulation. As a result, the development of strategies to increase the levels of the anticancer MIAs has remained elusive. The pathway involves mesophyll specialised idioblasts where the late unsolved biosynthetic steps are thought to occur. Here, protoplasts of C. roseus leaf idioblasts were isolated by fluorescence-activated cell sorting, and their differential alkaloid and transcriptomic profiles were characterised. This involved the assembly of an improved C. roseus transcriptome from short- and long-read data, IDIO+. It was observed that C. roseus mesophyll idioblasts possess a distinctive transcriptomic profile associated with protection against biotic and abiotic stresses, and indicative that this cell type is a carbon sink, in contrast with surrounding mesophyll cells. Moreover, it is shown that idioblasts are a hotspot of alkaloid accumulation, suggesting that their transcriptome may hold the keys to the in-depth understanding of the MIA pathway and the success of strategies leading to higher levels of the anticancer drugs.

2023

Obstructive sleep apnea: A categorical cluster analysis and visualization

Authors
Ferreira-Santos, D; Rodrigues, PP;

Publication
PULMONOLOGY

Abstract
Introduction and Objectives: Obstructive sleep apnea (OSA) is a prevalent sleep condition which is very heterogeneous although not formally characterized as such, resulting in missed or delayed diagnosis. Cluster analysis has been used in different clinical domains, particularly within sleep disorders. We aim to understand OSA heterogeneity and provide a variety of cluster visualizations to communicate the information clearly and efficiently.Materials and Methods: We applied an extension of k-means to be used in categorical variables: k -modes, to identify OSA patients' groups, based on demographic, physical examination, clinical his-tory, and comorbidities characterization variables (n = 40) obtained from a derivation and validation cohorts (211 and 53, respectively) from the northern region of Portugal. Missing values were imputed with k-nearest neighbours (k-NN) and a chi-square test was held for feature selection.Results: Thirteen variables were inserted in phenotypes, resulting in the following three clus-ters: Cluster 1, middle-aged males reporting witnessed apneas and high alcohol consumption before sleep; Cluster 2, middle-aged women with increased neck circumference (NC), non -repairing sleep and morning headaches; and Cluster 3, obese elderly males with increased NC, witnessed apneas and alcohol consumption. Patients from the validation cohort assigned to dif-ferent clusters showed similar proportions when compared with the derivation cohort, for mild (C1: 56 vs 75%, P = 0.230; C2: 61 vs 75%, P = 0.128; C3: 45 vs 48%, P = 0.831), moderate (C1: 24 vs 25%; C2: 20 vs 25%; C3: 25 vs 19%) and severe (C1: 20 vs 0%; C2: 18 vs 0%; C3: 29 vs 33%) levels. Therefore, the allocation supported the validation of the obtained clusters.Conclusions: Our findings suggest different OSA patients' groups, creating the need to rethink these patients' stereotypical baseline characteristics.(c) 2021 Sociedade Portuguesa de Pneumologia. Published by Elsevier Espana, S.L.U. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

2023

Impact of multimorbidity patterns in hospital admissions: the case study of asthma

Authors
Portela, D; Rodrigues, PP; Freitas, A; Costa, E; Bousquet, J; Fonseca, JA; Pinto, BS;

Publication
JOURNAL OF ASTHMA

Abstract
Background: Most previous studies assessing multimorbidity in asthma assessed the frequency of individual comorbid diseases. Objective: We aimed to assess the frequency and clinical and economic impact of co-occurring groups of comorbidities (comorbidity patterns using the Charlson Comorbidity Index) on asthma hospitalizations. Methods: We assessed the dataset containing a registration of all Portuguese hospitalizations between 2011-2015. We applied three different approaches (regression models, association rule mining, and decision trees) to assess both the frequency and impact of comorbidities patterns in the length-of-stay, in-hospital mortality and hospital charges. For each approach, separate analyses were performed for episodes with asthma as main and as secondary diagnosis. Separate analyses were performed by participants' age group. Results: We assessed 198340 hospitalizations in patients >18 years old. Both in hospitalizations with asthma as main or secondary diagnosis, combinations of diseases involving cancer, metastasis, cerebrovascular disease, hemiplegia/paraplegia, and liver disease displayed a relevant clinical and economic burden. In hospitalizations having asthma as a secondary diagnosis, we identified several comorbidity patterns involving asthma and associated with increased length-of-stay (average impact of 1.3 [95%CI=0.6-2.0]-3.2 [95%CI=1.8-4.6] additional days), in-hospital mortality (OR range=1.4 [95%CI=1.0-2.0]-7.9 [95%CI=2.6-23.5]) and hospital charges (average additional charges of 351.0 [95%CI=219.1-482.8] to 1470.8 [95%CI=1004.6-1937.0]) Euro compared with hospitalizations without any registered Charlson comorbidity). Consistent results were observed with association rules mining and decision tree approaches. Conclusions: Our findings highlight the importance not only of a complete assessment of patients with asthma, but also of considering the presence of asthma in patients admitted by other diseases, as it may have a relevant impact on clinical and health services outcomes.

  • 73
  • 515