Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by LIAAD

2023

tieval: An Evaluation Framework for Temporal Information Extraction Systems

Authors
Sousa, H; Jorge, A; Campos, R;

Publication
PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023

Abstract
Temporal information extraction (TIE) has attracted a great deal of interest over the last two decades. Such endeavors have led to the development of a significant number of datasets. Despite its benefits, having access to a large volume of corpora makes it difficult to benchmark TIE systems. On the one hand, different datasets have different annotation schemes, which hinders the comparison between competitors across different corpora. On the other hand, the fact that each corpus is disseminated in a different format requires a considerable engineering effort for a researcher/practitioner to develop parsers for all of them. These constraints force researchers to select a limited amount of datasets to evaluate their systems which consequently limits the comparability of the systems. Yet another obstacle to the comparability of TIE systems is the evaluation metric employed. While most research works adopt traditional metrics such as precision, recall, and..1, a few others prefer temporal awareness - a metric tailored to be more comprehensive on the evaluation of temporal systems. Although the reason for the absence of temporal awareness in the evaluation of most systems is not clear, one of the factors that certainly weighs on this decision is the need to implement the temporal closure algorithm, which is neither straightforward to implement nor easily available. All in all, these problems have limited the fair comparison between approaches and consequently, the development of TIE systems. To mitigate these problems, we have developed tieval, a Python library that provides a concise interface for importing different corpora and is equipped with domain-specific operations that facilitate system evaluation. In this paper, we present the first public release of tieval and highlight its most relevant features. The library is available as open source, under MIT License, at PyPI1 and GitHub(2).

2023

Proceedings of Text2Story - Sixth Workshop on Narrative Extraction From Texts held in conjunction with the 45th European Conference on Information Retrieval (ECIR 2023), Dublin, Ireland, April 2, 2023

Authors
Campos, R; Jorge, AM; Jatowt, A; Bhatia, S; Litvak, M;

Publication
Text2Story@ECIR

Abstract

2023

A survey on narrative extraction from textual data

Authors
Santana, B; Campos, R; Amorim, E; Jorge, A; Silvano, P; Nunes, S;

Publication
ARTIFICIAL INTELLIGENCE REVIEW

Abstract
Narratives are present in many forms of human expression and can be understood as a fundamental way of communication between people. Computational understanding of the underlying story of a narrative, however, may be a rather complex task for both linguists and computational linguistics. Such task can be approached using natural language processing techniques to automatically extract narratives from texts. In this paper, we present an in depth survey of narrative extraction from text, providing a establishing a basis/framework for the study roadmap to the study of this area as a whole as a means to consolidate a view on this line of research. We aim to fulfill the current gap by identifying important research efforts at the crossroad between linguists and computer scientists. In particular, we highlight the importance and complexity of the annotation process, as a crucial step for the training stage. Next, we detail methods and approaches regarding the identification and extraction of narrative components, their linkage and understanding of likely inherent relationships, before detailing formal narrative representation structures as an intermediate step for visualization and data exploration purposes. We then move into the narrative evaluation task aspects, and conclude this survey by highlighting important open issues under the domain of narratives extraction from texts that are yet to be explored.

2023

Annotation and Visualisation of Reporting Events in Textual Narratives

Authors
Silvano, P; Amorim, E; Leal, A; Cantante, I; Silva, F; Jorge, A; Campos, R; Nunes, S;

Publication
Proceedings of Text2Story - Sixth Workshop on Narrative Extraction From Texts held in conjunction with the 45th European Conference on Information Retrieval (ECIR 2023), Dublin, Ireland, April 2, 2023.

Abstract
News articles typically include reporting events to inform on what happened. These reporting events are not part of the story being told but are nonetheless a relevant part of the news and can pose a challenge to the computational processing of news narratives. They compose a reporting narrative, which is the present study's focus. This paper aims to demonstrate through selected use cases how a comprehensive annotation scheme with suitable tags and links can properly represent the reporting events and the way they relate to the events that make the story. In addition, we put forward a proposal for their visual representation that enables a systematic and detailed analysis of the importance of reporting events in the news structure. Finally, we describe some lexico-grammatical features of reporting events, which can contribute to their automatic detection. © 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

2023

Online Anomaly Explanation: A Case Study on Predictive Maintenance

Authors
Ribeiro, RP; Mastelini, SM; Davari, N; Aminian, E; Veloso, B; Gama, J;

Publication
MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT II

Abstract
Predictive Maintenance applications are increasingly complex, with interactions between many components. Black-box models are popular approaches due to their predictive accuracy and are based on deep-learning techniques. This paper presents an architecture that uses an online rule learning algorithm to explain when the black-box model predicts rare events. The system can present global explanations that model the black-box model and local explanations that describe why the black-box model predicts a failure. We evaluate the proposed system using four real-world public transport data sets, presenting illustrative examples of explanations.

2023

An Online Data-Driven Predictive Maintenance Approach for Railway Switches

Authors
Tome, ES; Ribeiro, RP; Veloso, B; Gama, J;

Publication
MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT II

Abstract
An online data-driven predictive maintenance approach for railway switches using data logs obtained from the interlocking system of the railway infrastructure is proposed in this paper. The proposed approach is detailed described and consists of a two-phase process: anomaly detection and remaining useful life prediction. The approach is applied to and validated in a real case study, the Metro do Porto, from which seven months of data is available. The approach has been revealed to be satisfactory in detecting anomalies. The results open the possibilities for further studies and validation with a more extensive dataset on the remaining useful life prediction.

  • 65
  • 515