2023
Authors
Pasandidehpoor, M; Mendes Moreira, J; Rahman Mohammadpour, S; Sousa, RT;
Publication
Handbook of Smart Energy Systems
Abstract
2023
Authors
Silva, JM; Nogueira, AR; Pinto, J; Alves, AC; Sousa, R;
Publication
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2023, PT I
Abstract
Effective quality control is essential for efficient and successful manufacturing processes in the era of Industry 4.0. Artificial Intelligence solutions are increasingly employed to enhance the accuracy and efficiency of quality control methods. In Computer Numerical Control machining, challenges involve identifying and verifying specific patterns of interest or trends in a time-series dataset. However, this can be a challenge due to the extensive diversity. Therefore, this work aims to develop a methodology capable of verifying the presence of a specific pattern of interest in a given collection of time-series. This study mainly focuses on evaluating One-Class Classification techniques using Linear Frequency Cepstral Coefficients to describe the patterns on the time-series. A real-world dataset produced by turning machines was used, where a time-series with a certain pattern needed to be verified to monitor the wear offset. The initial findings reveal that the classifiers can accurately distinguish between the time-series' target pattern and the remaining data. Specifically, the One-Class Support Vector Machine achieves a classification accuracy of 95.6 % +/- 1.2 and an F1-score of 95.4 % +/- 1.3.
2023
Authors
Mendes, TC; Barata, AA; Pereira, M; Moreira, JM; Camacho, R; Sousa, RT;
Publication
Intelligent Data Engineering and Automated Learning - IDEAL 2023 - 24th International Conference, Évora, Portugal, November 22-24, 2023, Proceedings
Abstract
Keeping high service levels of a fast-growing number of servers is crucial and challenging for IT operations teams. Online monitoring systems trigger many occurrences that experts find hard to keep up with. In addition, most of the triggered warnings do not correspond to real, critical problems, making it difficult for technicians to know which to focus on and address in a timely manner. Outlier and concept drift detection techniques can be applied to multiple streams of readings related to server monitoring metrics, but they also generate many False Positives. Ranking algorithms can already prioritize relevant results in information retrieval and recommender systems. However, these approaches are supervised, making them inapplicable in event detection on data streams. We propose a framework that combines event aggregations and uses a customized clustering algorithm to score and rank alarms in the context of IT operations. To the best of our knowledge, this is the first unsupervised, online, high-dimensional approach to rank IT ops events and contributes to advancing knowledge about associated key concepts and challenges of this problem. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2023.
2023
Authors
Campos, V; Campos, R; Jorge, A;
Publication
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2023, PT I
Abstract
Topics discussed on social media platforms contain a disparate amount of information written in colloquial language, making it difficult to understand the narrative of the topic. In this paper, we take a step forward, towards the resolution of this problem by proposing a framework that performs the automatic extraction of narratives from a document, such as tweet posts. To this regard, we propose a methodology that extracts information from the texts through a pipeline of tasks, such as co-reference resolution and the extraction of entity relations. The result of this process is embedded into an annotation file to be used by subsequent operations, such as visualization schemas. We named this framework Tweet2Story and measured its effectiveness under an evaluation schema that involved three different aspects: (i) as an Open Information extraction (OpenIE) task, (ii) by comparing the narratives of manually annotated news articles linked to tweets about the same topic and (iii) by comparing their knowledge graphs, produced by the narratives, in a qualitative way. The results obtained show a high precision and a moderate recall, on par with other OpenIE state-of-the-art frameworks and confirm that the narratives can be extracted from small texts. Furthermore, we show that the narrative can be visualized in an easily understandable way.
2023
Authors
Cunha, LF; Campos, R; Jorge, A;
Publication
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2023, PT I
Abstract
Event extraction is an Information Retrieval task that commonly consists of identifying the central word for the event (trigger) and the event's arguments. This task has been extensively studied for English but lags behind for Portuguese, partly due to the lack of task-specific annotated corpora. This paper proposes a framework in which two separated BERT-based models were fine-tuned to identify and classify events in Portuguese documents. We decompose this task into two sub-tasks. Firstly, we use a token classification model to detect event triggers. To extract event arguments, we train a Question Answering model that queries the triggers about their corresponding event argument roles. Given the lack of event annotated corpora in Portuguese, we translated the original version of the ACE-2005 dataset (a reference in the field) into Portuguese, producing a new corpus for Portuguese event extraction. To accomplish this, we developed an automatic translation pipeline. Our framework obtains F1 marks of 64.4 for trigger classification and 46.7 for argument classification setting, thus a new state of the art reference for these tasks in Portuguese.
2023
Authors
Muhammad, SH; Brazdil, P; Jorge, A;
Publication
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2023, PT I
Abstract
Deep learning approaches have become popular in many different areas, including sentiment analysis (SA), because of their competitive performance. However, the downside of this approach is that they do not provide understandable explanations on how the sentiment values are calculated. In contrast, previous approaches that used sentiment lexicons can do that, but their performance is normally not high. To leverage the strengths of both approaches, we present a neuro-symbolic approach that combines deep learning (DL) and symbolic methods for SA tasks. The DL approach uses a pre-trained language model (PLM) to construct sentiment lexicon. The symbolic approach exploits the constructed sentiment lexicon and manually constructed shifter patterns to determine the sentiment of a sentence. Our experimental results show that the proposed approach leads to promising results with the additional advantage that sentiment predictions can be accompanied by understandable explanations.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.