Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by LIAAD

2025

Optimizing Renewable Microgrid Performance Through Hydrogen Storage Integration

Authors
Ribeiro, B; Baptista, J; Cerveira, A;

Publication
ALGORITHMS

Abstract
The global transition to a low-carbon energy system requires innovative solutions that integrate renewable energy production with storage and utilization technologies. The growth in energy demand, combined with the intermittency of these sources, highlights the need for advanced management models capable of ensuring system stability and efficiency. This paper presents the development of an optimized energy management system integrating renewable sources, with a focus on green hydrogen production via electrolysis, storage, and use through a fuel cell. The system aims to promote energy autonomy and support the transition to a low-carbon economy by reducing dependence on the conventional electricity grid. The proposed model enables flexible hourly energy flow optimization, considering solar availability, local consumption, hydrogen storage capacity, and grid interactions. Formulated as a Mixed-Integer Linear Programming (MILP) model, it supports strategic decision-making regarding hydrogen production, storage, and utilization, as well as energy trading with the grid. Simulations using production and consumption profiles assessed the effects of hydrogen storage capacity and electricity price variations. Results confirm the effectiveness of the model in optimizing system performance under different operational scenarios.

2025

Será o ChatGPT um bom divulgador científico em cosmetologia? Um estudo linguístico sobre textos de divulgação científica - Is ChatGPT a good popular science disseminator in cosmetology? A linguistic study on popular science texts

Authors
Pacheco, AF; Guimarães, N; Torres, A; Silvano, P; Almeida, I;

Publication
Revista da Associação Portuguesa de Linguística

Abstract
O género textual de divulgação científica é fundamental para a disseminação do conhecimento científico de forma acessível e compreensível junto do público não especializado, apresentando estrutura e características diferentes das dos artigos científicos (e.g., Garces-Conejos & Sanchez-Macarro, 1998; Zamboni, 1998). Os estudos sobre as propriedades linguísticas do texto de divulgação científica em português europeu não abundam, sendo a exceção o projeto Promoção da Literacia Científica (Gonçalves & Jorge, 2018). Por outro lado, no âmbito da produção de conteúdo, os grandes modelos de linguagem (LLM), nomeadamente os modelos GPT da OpenAI, ganharam, em pouco tempo, atenção generalizada do público. Sendo recentes, a avaliação da qualidade linguística dos textos produzidos é ainda muito reduzida. Tendo estas premissas em consideração, o presente estudo tem como objetivo avaliar a qualidade linguística das respostas geradas pelo ChatGPT (GPT-3.5) no domínio da cosmetologia, no que respeita às categorias de produtos cosméticos, ingredientes, segurança e eficácia e regulamentação, visando identificar padrões que permitam compreender as diferenças e/ou semelhanças entre o conteúdo gerado pelo LLM e aquele produzido por especialistas humanos no Portal infoCosméticos. Para isso, foram selecionadas vinte questões previamente respondidas e publicadas no portal e, posteriormente, criados quatro prompts distintos com diferentes graus de complexidade, que deram origem a oitenta respostas geradas pelo ChatGPT. As respostas foram, de seguida, analisadas, de acordo com os resultados conduzidos por uma grelha de avaliação linguística composta por 11 perguntas. A análise produziu resultados de diferentes tipos: em termos globais, as respostas escritas pelos especialistas produzem resultados ligeiramente superiores às do ChatGPT; quanto à coesão interfrásica, constatou-se que os textos produzidos por especialistas usam um número reduzido de conectores, contrastando com o uso recorrentemente de marcadores discursivos nos textos do ChatGPT; verifica-se o uso de jargão científico não explicado e uma macroestrutura com ausência do parágrafo da conclusão, nos textos publicados no portal; os textos gerados pelo ChatGPT apresentam uma frequência elevada de repetições e/ou tautologias.

2025

PolyNarrative: A Multilingual, Multilabel, Multi-domain Dataset for Narrative Extraction from News Articles

Authors
Nikolaidis, N; Stefanovitch, N; Silvano, P; Dimitrov, D; Yangarber, R; Guimaraes, N; Sartori, E; Androutsopoulos, I; Nakov, P; Da San Martino, G; Piskorski, J;

Publication
PROCEEDINGS OF THE 63RD ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1: LONG PAPERS

Abstract
We present PolyNarrative, a new multilingual dataset of news articles, annotated for narratives. Narratives are overt or implicit claims, recurring across articles and languages, promoting a specific interpretation or viewpoint on an ongoing topic, often propagating mis/disinformation. We developed two-level taxonomies with coarse- and fine-grained narrative labels for two domains: (i) climate change and (ii) the military conflict between Ukraine and Russia. We collected news articles in four languages (Bulgarian, English, Portuguese, and Russian) related to the two domains and manually annotated them at the paragraph level. We make the dataset publicly available, along with experimental results of several strong baselines that assign narrative labels to news articles at the paragraph or the document level. We believe that this dataset will foster research in narrative detection and enable new research directions towards more multi-domain and highly granular narrative related tasks.

2025

Automating Data Extraction from PDF Sleep Reports Using Data Mining Techniques

Authors
Teixeira, F; Costa, J; Amorim, P; Guimarães, N; Ferreira Santos, D;

Publication
Studies in health technology and informatics

Abstract
This work introduces a web application for extracting, processing, and visualizing data from sleep studies reports. Using Optical Character Recognition (OCR) and Natural Language Processing (NLP), the pipeline extracts over 75 key data points from four types of sleep reports. The web application offers an intuitive interface to view individual reports' details and aggregate data from multiple reports. The pipeline demonstrated 100% accuracy in extracting targeted information from a test set of 40 reports, even in cases with missing data or formatting inconsistencies. The developed tool streamlines the analysis of OSA reports, reducing the need for technical expertise and enabling healthcare providers and researchers to utilize sleep study data efficiently. Future work aims to expand the dataset for more complex analyses and imputation techniques.

2025

Hyper-Personalised Marketing with Generative AI and Predictive Models: A Systematic Review

Authors
Pires, PB; Santos, JD; Torres, AI;

Publication
Advances in Computational Intelligence and Robotics - Adapting Global Communication and Marketing Strategies to Generative AI

Abstract
This chapter examines how GenAI and predictive modelling strategies affect hyperpersonalised marketing. Through a comprehensive literature review and case studies, it examines hyper-p ersonalisation's theoretical frameworks, technical infrastructures, and ethical and governance issues. Large language models, generative adversarial networks, and diffusion models combined with advanced predictive analytics allow firms to scale real- time, highly individualised customer experiences. Effective implementation requires sophisticated data architectures, algorithmic transparency, and strong privacy protections. Integration complexity and ethical accountability are major barriers to consumer engagement and conversion, according to the research. Based on these findings, the chapter proposes an integrated framework that combines technological innovation with ethics and customer focus. This research advances marketing theory and provides practical advice for companies using AI- driven hyper-personalisation while maintaining consumer trust and regulatory compliance. © 2026, IGI Global Scientific Publishing. All rights reserved.

2025

Towards Smarter Property Recommendations in Complex Housing Market

Authors
Nogueira, AR; Pinto, J; da Silva, JP; Nunes, GD; Curral, M; Sousa, RT;

Publication
Progress in Artificial Intelligence - 24th EPIA Conference on Artificial Intelligence, EPIA 2025, Faro, Portugal, October 1-3, 2025, Proceedings, Part I

Abstract
Manual selection of real estate properties can pose considerable challenges for agents since it needs a careful balance of various factors to satisfy client requirements while also manoeuvring through the complexities of the market. Although automated valuation models are widely used to estimate property market values, they are not designed to support property recommendation tasks. To address this gap, filtering-based recommendation methods have been explored, including collaborative and content-based approaches. However, these methods face several limitations in the real estate domain. This paper proposes a recommendation methodology designed to identify houses that closely resemble a given property, allowing agents to select the best matches based on geographical and physical characteristics. To assess the performance of the proposed methodology, we employ a range of evaluation metrics that measure different aspects of the model’s effectiveness in ranking and recommending relevant items. The findings suggest that, while geographic features may slightly influence ranking behaviour, the model is capable of producing diverse and relevant recommendations consistently. © 2025 Elsevier B.V., All rights reserved.

  • 26
  • 515