Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by LIAAD

2025

Interpretable Predictive Maintenance: Combining Anomaly Detection with Quantitative Root Cause Analysis

Authors
Barbosa, I; Gama, J; Veloso, B;

Publication
Progress in Artificial Intelligence - 24th EPIA Conference on Artificial Intelligence, EPIA 2025, Faro, Portugal, October 1-3, 2025, Proceedings, Part II

Abstract
Predictive Maintenance (PdM) aims to prevent failures through early detection, yet lacks explainability to support decision-making. Current PdM models often identify failures, but fail to explain their root causes, especially in real-world scenarios, with complex and limited labeled data. This study proposes an interpretable framework that combines LSTM-based Anomaly Detection with a dual-layered Root Cause Analysis (RCA) based on SHAP attributions. Applied to a real-world dataset, the method detects degradation transitions, tracks failure patterns over time, and provides interpretable information without explicit root cause labels. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.

2025

Effect of AI on Innovation Capacity in the context of Industry 5.0: Findings from a Qualitative study

Authors
Bécue, A; Gama, J; Brito, PQ;

Publication
Strategic Business Research

Abstract

2025

A Systematic Literature Review on Multi-label Data Stream Classification

Authors
Oliveira, HF; de Faria, ER; Gama, J; Khan, L; Cerri, R;

Publication
CoRR

Abstract

2025

Salvador Urban Network Transportation (SUNT): A Landmark Spatiotemporal Dataset for Public Transportation

Authors
Ferreira, MV; Souza, M; Rios, TN; Fernandes, IFC; Nery, J; Gama, J; Bifet, A; Rios, RA;

Publication
SCIENTIFIC DATA

Abstract
Efficient public transportation management is essential for the development of large urban centers, providing several benefits such as comprehensive coverage of population mobility, reduction of transport costs, better control of traffic congestion, and significant reduction of environmental impact limiting gas emissions and pollution. Realizing these benefits requires a deeply understanding the population and transit patterns and the adoption of approaches to model multiple relations and characteristics efficiently. This work addresses these challenges by providing a novel dataset that includes various public transportation components from three different systems: regular buses, subway, and BRT (Bus Rapid Transit). Our dataset comprises daily information from about 700,000 passengers in Salvador, one of Brazil's largest cities, and local public transportation data with approximately 2,000 vehicles operating across nearly 400 lines, connecting almost 3,000 stops and stations. With data collected from March 2024 to March 2025 at a frequency lower than one minute, SUNT stands as one of the largest, most comprehensive, and openly available urban datasets in the literature.

2025

Data Science: Foundations and Applications - 29th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2025, Sydney, Australia, June 10-13, 2025, Proceedings, Part VII

Authors
Wu, X; Spiliopoulou, M; Wang, C; Kumar, V; Cao, L; Zhou, X; Pang, G; Gama, J;

Publication
PAKDD (7)

Abstract

2025

Data Science: Foundations and Applications - 29th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2025, Sydney, NSW, Australia, June 10-13, 2025, Proceedings, Part VI

Authors
Wu, X; Spiliopoulou, M; Wang, C; Kumar, V; Cao, L; Zhou, X; Pang, G; Gama, J;

Publication
PAKDD (6)

Abstract

  • 13
  • 515