Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by HASLab

2025

Revisiting the Security and Privacy of FIDO2

Authors
Barbosa, M; Boldyreva, A; Chen, S; Cheng, K; Esquível, L;

Publication
IACR Cryptol. ePrint Arch.

Abstract

2025

NoIC: PAKE from KEM without Ideal Ciphers

Authors
Arriaga, A; Barbosa, M; Jarecki, S;

Publication
IACR Cryptol. ePrint Arch.

Abstract

2025

A Tight Security Proof for SPHINCS+, Formally Verified

Authors
Barbosa, M; Dupressoir, F; Hülsing, A; Meijers, M; Strub, PY;

Publication
ADVANCES IN CRYPTOLOGY - ASIACRYPT 2024, PT IV

Abstract
SPHINCS+ is a post-quantum signature scheme that, at the time of writing, is being standardized as SLH-DSA. It is the most conservative option for post-quantum signatures, but the original tight proofs of security were flawed- as reported by Kudinov, Kiktenko and Fedorov in 2020. In this work, we formally prove a tight security bound for SPHINCS+ using the EasyCrypt proof assistant, establishing greater confidence in the general security of the scheme and that of the parameter sets considered for standardization. To this end, we reconstruct the tight security proof presented by Hulsing and Kudinov (in 2022) in a modular way. A small but important part of this effort involves a complex argument relating four different games at once, of a form not yet formalized in EasyCrypt (to the best of our knowledge). We describe our approach to overcoming this major challenge, and develop a general formal verification technique aimed at this type of reasoning. Enhancing the set of reusable EasyCrypt artifacts previously produced in the formal verification of stateful hash-based cryptographic constructions, we (1) improve and extend the existing libraries for hash functions and (2) develop new libraries for fundamental concepts related to hash-based cryptographic constructions, including Merkle trees. These enhancements, along with the formal verification technique we develop, further ease future formal verification endeavors in EasyCrypt, especially those concerning hash-based cryptographic constructions.

2025

C'est Tres CHIC: A Compact Password-Authenticated Key Exchange from Lattice-Based KEM

Authors
Arriaga, A; Barbosa, M; Jarecki, S; Skrobot, M;

Publication
ADVANCES IN CRYPTOLOGY - ASIACRYPT 2024, PT V

Abstract
Driven by the NIST's post-quantum standardization efforts and the selection of Kyber as a lattice-based Key-Encapsulation Mechanism (KEM), severalPasswordAuthenticated KeyExchange (PAKE) protocols have been recently proposed that leverage a KEM to create an efficient, easy-to-implement and secure PAKE. In two recent works, Beguinet et al. (ACNS 2023) and Pan and Zeng (ASIACRYPT 2023) proposed generic compilers that transform KEM into PAKE, relying on an Ideal Cipher (IC) defined over a group. However, although IC on a group is often used in cryptographic protocols, special care must be taken to instantiate such objects in practice, especially when a low-entropy key is used. To address this concern, Dos Santos et al. (EUROCRYPT 2023) proposed a relaxation of the ICmodel under the Universal Composability (UC) framework called Half-Ideal Cipher (HIC). They demonstrate how to construct a UC-secure PAKE protocol, EKE-KEM, from a KEM and a modified 2round Feistel construction called m2F. Remarkably, the m2F sidesteps the use of an IC over a group, and instead employs an IC defined over a fixed-length bitstring domain, which is easier to instantiate. In this paper, we introduce a novel PAKE protocol called CHIC that improves the communication and computation efficiency of EKE-KEM, by avoiding the HIC abstraction. Instead, we split the KEM public key in two parts and use the m2F directly, without further randomization. We provide a detailed proof of the security of CHIC and establish precise security requirements for the underlying KEM, including one-wayness and anonymity of ciphertexts, and uniformity of public keys. Our findings extend to general KEM-based EKE-style protocols and show that a passively secure KEM is not sufficient. In this respect, our results align with those of Pan and Zeng (ASIACRYPT 2023), but contradict the analyses of KEM-to-PAKE compilers by Beguinet et al. (ACNS 2023) and Dos Santos et al. (EUROCRYPT 2023). Finally, we provide an implementation of CHIC, highlighting its minimal overhead compared to the underlying KEM - Kyber. An interesting aspect of the implementation is that we reuse the rejection sampling procedure in Kyber reference code to address the challenge of hashing onto the public key space. As of now, to the best of our knowledge, CHIC stands as the most efficient PAKE protocol from black-box KEM that offers rigorously proven UC security.

2025

Meta Subspace Analysis: Understanding Model (Mis)behavior in the Metafeature Space

Authors
Soares, C; Azevedo, PJ; Cerqueira, V; Torgo, L;

Publication
Discovery Science - 28th International Conference, DS 2025, Ljubljana, Slovenia, September 23-25, 2025, Proceedings

Abstract
A subgroup discovery-based method has recently been proposed to understand the behavior of models in the (original) feature space. The subgroups identified represent areas of feature space where the model obtains better or worse predictive performance when compared to the average test performance. For instance, in the marketing domain, the approach extracts subgroups such as: in groups of customers with higher income and who are younger, the random forest achieves higher accuracy than on average. Here, we propose a complementary method, Meta Subspace Analysis (MSA), MSA uses metalearning to analyze these subgroups in the metafeature space. We use association rules to relate metafeatures of the feature space represented by the subgroups to the improvement or degradation of the performance of models. For instance, in the same domain, the approach extracts rules such as: when the class entropy decreases and the mutual information increases in the subgroup data, the random forest achieves lower accuracy. While the subgroups in the original feature space are useful for the end user and the data scientist developing the corresponding model, the meta-level rules provide a domain-independent perspective on the behavior of the model that is suitable for the same data scientist but also for ML researchers, to understand the behavior of algorithms. We illustrate the approach with the results of two well-known algorithms, naive Bayes and random forest, on the Adult dataset. The results confirm some expected behavior of algorithms. However, and most interestingly, some unexpected behaviors are also obtained, requiring additional investigation. In general, the empirical study demonstrates the usefulness of the approach to obtain additional knowledge about the behavior of models. © 2025 Elsevier B.V., All rights reserved.

2025

Exon: An Oblivious Exactly-Once Messaging Protocol With Reliable Delegation

Authors
Kassam, Z; Almeida, PS; Shoker, A;

Publication
IEEE Access

Abstract
TCP is the default transport protocol of choice, namely for message-oriented middleware protocols (e.g., ZMTP, AMQP, MQTT) or distributed language runtimes (e.g., distributed Erlang), where exactly-once (EO) messaging is paramount. However, EO is only guaranteed within the TCP session, since reality shows that TCP connections can fail under many circumstances. Ensuring EO delivery ends up at the middleware layer, at the cost of higher complexity and lack of obliviouness - due to the use of permanent per-peer state. Moreover, using TCP at scale in highly concurrent systems leads to the need for TCP connection multiplexing, and possibly drastic performance loss due to head-of-line blocking. This paper introduces Exon, an oblivious exactly-once messaging protocol, and a corresponding lightweight (requiring no persistent storage, minimal memory, and low computation) library implementation over UDP. Exon uses a novel strategy of a per-message four-way protocol to ensure oblivious exactly-once messaging, with on-demand protocol-level "soft half-connections", established when needed and safely discarded. Obliviousness here refers to the protocol's ability to discard connection-specific state between incarnations, although some global information is retained. Exon achieves simultaneously: correctness with no timing assumptions, obliviousness, and performance through merging and pipelining basic protocol messages. Exon also employs a reliable delegation technique to handover the sending responsibility to a mediating node, without violating EO, when the sender the receiver are directly unreachable to each other and even if the message had already been delivered. The empirical evaluation of Exon demonstrates significant improvements (40%) over TCP in throughput and latency under packet loss, while maintaining a negligible (8%) overhead in healthy networks.

  • 9
  • 266