Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by HASLab

2024

On Quantum Natural Policy Gradients

Authors
Sequeira, A; Santos, LP; Barbosa, LS;

Publication
IEEE TRANSACTIONS ON QUANTUM ENGINEERING

Abstract
This article delves into the role of the quantum Fisher information matrix (FIM) in enhancing the performance of parameterized quantum circuit (PQC)-based reinforcement learning agents. While previous studies have highlighted the effectiveness of PQC-based policies preconditioned with the quantum FIM in contextual bandits, its impact in broader reinforcement learning contexts, such as Markov decision processes, is less clear. Through a detailed analysis of L & ouml;wner inequalities between quantum and classical FIMs, this study uncovers the nuanced distinctions and implications of using each type of FIM. Our results indicate that a PQC-based agent using the quantum FIM without additional insights typically incurs a larger approximation error and does not guarantee improved performance compared to the classical FIM. Empirical evaluations in classic control benchmarks suggest even though quantum FIM preconditioning outperforms standard gradient ascent, in general, it is not superior to classical FIM preconditioning.

2024

Bare PAKE: Universally Composable Key Exchange from Just Passwords

Authors
Barbosa, M; Gellert, K; Hesse, J; Jarecki, S;

Publication
ADVANCES IN CRYPTOLOGY - CRYPTO 2024, PT II

Abstract
In the past three decades, an impressive body of knowledge has been built around secure and private password authentication. In particular, secure password-authenticated key exchange (PAKE) protocols require only minimal overhead over a classical Diffie-Hellman key exchange. PAKEs are also known to fulfill strong composable security guarantees that capture many password-specific concerns such as password correlations or password mistyping, to name only a few. However, to enjoy both round-optimality and strong security, applications of PAKE protocols must provide unique session and participant identifiers. If such identifiers are not readily available, they must be agreed upon at the cost of additional communication flows, a fact which has been met with incomprehension among practitioners, and which hindered the adoption of provably secure password authentication in practice. In this work, we resolve this issue by proposing a new paradigm for truly password-only yet securely composable PAKE, called bare PAKE. We formally prove that two prominent PAKE protocols, namely CPace and EKE, can be cast as bare PAKEs and hence do not require pre-agreement of anything else than a password. Our bare PAKE modeling further allows to investigate a novel reusability property of PAKEs, i.e., whether n(2) pairwise keys can be exchanged from only n messages, just as the Diffie-Hellman non-interactive key exchange can do in a public-key setting. As a side contribution, this add-on property of bare PAKEs leads us to observe that some previous PAKE constructions relied on unnecessarily strong, reusable building blocks. By showing that non-reusable tools suffice for standard PAKE, we open a new path towards round-optimal post-quantum secure password-authenticated key exchange.

2024

X-Wing: The Hybrid KEM You've Been Looking For

Authors
Barbosa, M; Connolly, D; Duarte, JD; Kaiser, A; Schwabe, P; Varner, K; Westerbaan, B;

Publication
IACR Cryptol. ePrint Arch.

Abstract

2024

A Framework for Consistency Models in Distributed Systems

Authors
Almeida, PS;

Publication
CoRR

Abstract

2024

The Blocklace: A Universal, Byzantine Fault-Tolerant, Conflict-free Replicated Data Type

Authors
Almeida, PS; Shapiro, E;

Publication
CoRR

Abstract

2024

Designing Software with Complex Configurations

Authors
Cunha, A;

Publication
CoRR

Abstract

  • 23
  • 266