2024
Authors
Viera, M; Pardo, A; Saraiva, J;
Publication
FUNCTIONAL AND LOGIC PROGRAMMING, FLOPS 2024
Abstract
Tabulation is a well-known technique for improving the efficiency of recursive functions with redundant function calls. A key point in the application of this technique is to identify a suitable representation for the table. In this paper, we propose the use of zippers as tables in the tabulation process. Our approach relies on a generic function zipWithZipper, that makes strong use of lazy evaluation to traverse two zippers in a circular manner. The technique turns out to be particularly efficient when the arguments to recursive calls are closely situated within the function domain. For example, in the case of natural numbers this means function calls on fairly contiguous values. Likewise, when dealing with tree structures, it means functions calls on immediate sub-trees and parent nodes. This results in a concise and efficient zipper-based embedding of attribute grammars.
2024
Authors
Rodrigues, E; Macedo, JN; Viera, M; Saraiva, J;
Publication
Proceedings of the 19th International Conference on Evaluation of Novel Approaches to Software Engineering, ENASE 2024, Angers, France, April 28-29, 2024.
Abstract
This paper presents pyZtrategic: a library that embeds strategic term rewriting and attribute grammars in the Python programming language. Strategic term rewriting and attribute grammars are two powerful programming techniques widely used in language engineering: The former relies on strategies to apply term rewrite rules in defining large-scale language transformations, while the latter is suitable to express context-dependent language processing algorithms. Thus, pyZtrategic offers Python programmers recursion schemes (strategies) which apply term rewrite rules in defining large scale language transformations. It also offers attribute grammars to express context-dependent language processing algorithms. PyZtrategic offers the best of those two worlds, thus providing powerful abstractions to express software maintenance and evolution tasks. Moreover, we developed several language engineering problems in pyZtrategic, and we compare it to well established strategic programming and attribute grammar systems. Our preliminary results show that our library offers similar expressiveness as such systems, but, unfortunately, it does suffer from the current poor runtime performance of the Python language. © 2024 by SCITEPRESS – Science and Technology Publications, Lda.
2024
Authors
Macedo, JN; Rodrigues, E; Viera, M; Saraiva, J;
Publication
JOURNAL OF SYSTEMS AND SOFTWARE
Abstract
Strategic term re-writing and attribute grammars are two powerful programming techniques widely used in language engineering. The former relies on strategies to apply term re-write rules in defining largescale language transformations, while the latter is suitable to express context-dependent language processing algorithms. These two techniques can be expressed and combined via a powerful navigation abstraction: generic zippers. This results in a concise zipper-based embedding offering the expressiveness of both techniques. In addition, we increase the functionalities of strategic programming, enabling the definition of outwards traversals; i.e. outside the starting position. Such elegant embedding has a severe limitation since it recomputes attribute values. This paper presents a proper and efficient embedding of both techniques. First, attribute values are memoized in the zipper data structure, thus avoiding their re-computation. Moreover, strategic zipper based functions are adapted to access such memoized values. We have hosted our memoized zipper-based embedding of strategic attribute grammars both in the Haskell and Python programming languages. Moreover, we benchmarked the libraries supporting both embedding against the state-of-the-art Haskell-based Strafunski and Scala-based Kiama libraries. The first results show that our Haskell Ztrategic library is very competitive against those two well established libraries.
2024
Authors
Rua, R; Saraiva, J;
Publication
EMPIRICAL SOFTWARE ENGINEERING
Abstract
Software performance concerns have been attracting research interest at an increasing rate, especially regarding energy performance in non-wired computing devices. In the context of mobile devices, several research works have been devoted to assessing the performance of software and its underlying code. One important contribution of such research efforts is sets of programming guidelines aiming at identifying efficient and inefficient programming practices, and consequently to steer software developers to write performance-friendly code.Despite recent efforts in this direction, it is still almost unfeasible to obtain universal and up-to-date knowledge regarding software and respective source code performance. Namely regarding energy performance, where there has been growing interest in optimizing software energy consumption due to the power restrictions of such devices. There are still many difficulties reported by the community in measuring performance, namely in large-scale validation and replication. The Android ecosystem is a particular example, where the great fragmentation of the platform, the constant evolution of the hardware, the software platform, the development libraries themselves, and the fact that most of the platform tools are integrated into the IDE's GUI, makes it extremely difficult to perform performance studies based on large sets of data/applications. In this paper, we analyze the execution of a diversified corpus of applications of significant magnitude. We analyze the source-code performance of 1322 versions of 215 different Android applications, dynamically executed with over than 27900 tested scenarios, using state-of-the-art black-box testing frameworks with different combinations of GUI inputs. Our empirical analysis allowed to observe that semantic program changes such as adding functionality and repairing bugfixes are the changes more associated with relevant impact on energy performance. Furthermore, we also demonstrate that several coding practices previously identified as energy-greedy do not replicate such behavior in our execution context and can have distinct impacts across several performance indicators: runtime, memory and energy consumption. Some of these practices include some performance issues reported by the Android Lint and Android SDK APIs. We also provide evidence that the evaluated performance indicators have little to no correlation with the performance issues' priority detected by Android Lint. Finally, our results allowed us to demonstrate that there are significant differences in terms of performance between the most used libraries suited for implementing common programming tasks, such as HTTP communication, JSON manipulation, image loading/rendering, among others, providing a set of recommendations to select the most efficient library for each performance indicator. Based on the conclusions drawn and in the extension of the developed work, we also synthesized a set of guidelines that can be used by practitioners to replicate energy studies and build more efficient mobile software.
2024
Authors
Almeida, JB; Olmos, SA; Barbosa, M; Barthe, G; Dupressoir, F; Grégoire, B; Laporte, V; Lechenet, JC; Low, C; Oliveira, T; Pacheco, H; Quaresma, M; Schwabe, P; Strub, PY;
Publication
ADVANCES IN CRYPTOLOGY - CRYPTO 2024, PT II
Abstract
We present a formally verified proof of the correctness and IND-CCA security of ML-KEM, the Kyber-based Key Encapsulation Mechanism (KEM) undergoing standardization by NIST. The proof is machine-checked in EasyCrypt and it includes: 1) A formalization of the correctness (decryption failure probability) and IND-CPA security of the Kyber base public-key encryption scheme, following Bos et al. at Euro S&P 2018; 2) A formalization of the relevant variant of the Fujisaki-Okamoto transform in the Random Oracle Model (ROM), which follows closely (but not exactly) Hofheinz, Hovelmanns and Kiltz at TCC 2017; 3) A proof that the IND-CCA security of the ML-KEM specification and its correctness as a KEM follows from the previous results; 4) Two formally verified implementations of ML-KEM written in Jasmin that are provably constant-time, functionally equivalent to the ML-KEM specification and, for this reason, inherit the provable security guarantees established in the previous points. The top-level theorems give self-contained concrete bounds for the correctness and security of ML-KEM down to (a variant of) Module-LWE. We discuss how they are built modularly by leveraging various EasyCrypt features.
2024
Authors
Spano, LD; Campos, JC; Dittmar, A;
Publication
DESIGN FOR EQUALITY AND JUSTICE, INTERACT 2023, PT I
Abstract
The second workshop on HCI Engineering Education continued the effort of the IFIP Working Group 2.7/13.4 on User Interface Engineering by discussing the issues and identifying the opportunities in teaching and learning Human-Computer Interaction (HCI) Engineering. The workshop attracted eight papers covering different teaching contexts, ranging from massive university courses, passing through different teaching experiences in specific academic curricula, and even teaching engineering concepts to children. In addition, the workshop received input for improving and adapting the repository material to the dynamic nature of this field. The discussion after the presentation of the contributions focused on how to model competencies, the support to interdisciplinary work, the overall course design, the recruitment of the students and the provision of educational resources, paving the way for further editions of the workshop.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.