2025
Authors
Adao, R; Wu, ZJ; Zhou, CJ; Balmau, O; Paulo, J; Macedo, R;
Publication
PROCEEDINGS OF THE VLDB ENDOWMENT
Abstract
We present Keigo, a concurrency-and workload-aware storage middleware that enhances the performance of log-structured merge key-value stores (LSM KVS) when they are deployed on a hierarchy of storage devices. The key observation behind Keigo is that there is no one-size-fits-all placement of data across the storage hierarchy that optimizes for all workloads. Hence, to leverage the benefits of combining different storage devices, Keigo places files across different devices based on their parallelism, I/O bandwidth, and capacity. We introduce three techniques-concurrency-aware data placement, persistent read-only caching, and context-based I/O differentiation. Keigo is portable across different LSMs, is adaptable to dynamic workloads, and does not require extensive profiling. Our system enables established production KVS such as RocksDB, LevelDB, and Speedb to benefit from heterogeneous storage setups. We evaluate Keigo using synthetic and realistic workloads, showing that it improves the throughput of production-grade LSMs up to 4x for write-and 18x for read-heavy workloads when compared to general-purpose storage systems and specialized LSM KVS.
2025
Authors
Brito C.V.; Ferreira P.G.; Paulo J.T.;
Publication
IEEE Journal of Biomedical and Health Informatics
Abstract
Breakthroughs in sequencing technologies led to an exponential growth of genomic data, providing novel biological insights and therapeutic applications. However, analyzing large amounts of sensitive data raises key data privacy concerns, specifically when the information is outsourced to untrusted third-party infrastructures for data storage and processing (e.g., cloud computing). We introduce Gyosa, a secure and privacy-preserving distributed genomic analysis solution. By leveraging trusted execution environments (TEEs), Gyosa allows users to confidentially delegate their GWAS analysis to untrusted infrastructures. Gyosa implements a computation partitioning scheme that reduces the computation done inside the TEEs while safeguarding the users' genomic data privacy. By integrating this security scheme in Glow, Gyosa provides a secure and distributed environment that facilitates diverse GWAS studies. The experimental evaluation validates the applicability and scalability of Gyosa, reinforcing its ability to provide enhanced security guarantees.
2025
Authors
Brito C.; Pina N.; Esteves T.; Vitorino R.; Cunha I.; Paulo J.;
Publication
Transportation Engineering
Abstract
Cities worldwide have agreed on ambitious goals regarding carbon neutrality. To do so, policymakers seek ways to foster smarter and cleaner transportation solutions. However, citizens lack awareness of their carbon footprint and of greener mobility alternatives such as public transports. With this, three main challenges emerge: (i) increase users’ awareness regarding their carbon footprint, (ii) provide personalized recommendations and incentives for using sustainable transportation alternatives and, (iii) guarantee that any personal data collected from the user is kept private. This paper addresses these challenges by proposing a new methodology. Created under the FranchetAI project, the methodology combines federated Artificial Intelligence (AI) and Greenhouse Gas (GHG) estimation models to calculate the carbon footprint of users when choosing different transportation modes (e.g., foot, car, bus). Through a mobile application that keeps the privacy of users’ personal information, the project aims at providing detailed reports to inform citizens about their impact on the environment, and an incentive program to promote the usage of more sustainable mobility alternatives.
2025
Authors
Madampe, K; Grundy, J; Good, J; Hidellaarachchi, D; Cunha, J; Brown, C; Kuang, P; Tamime, RA; Anik, AI; Sarkar, A; Zhou, W; Khalid, S; Turchi, T; Wickramathilaka, S; Jiang, Y;
Publication
ACM SIGSOFT Softw. Eng. Notes
Abstract
2025
Authors
Costa, L; Barbosa, S; Cunha, J;
Publication
CoRR
Abstract
2025
Authors
Costa, L; Barbosa, S; Cunha, J;
Publication
PROCEEDINGS OF THE 3RD ACM CONFERENCE ON REPRODUCIBILITY AND REPLICABILITY, ACM REP 2025
Abstract
Reproducibility in computational science is increasingly dependent on the ability to faithfully re-execute experiments involving code, data, and software environments. However, assessing the effectiveness of reproducibility tools is difficult due to the lack of standardized benchmarks. To address this, we collected 38 computational experiments from diverse scientific domains and attempted to reproduce each using 8 different reproducibility tools. From this initial pool, we identified 18 experiments that could be successfully reproduced using at least one tool. These experiments form our curated benchmark dataset, which we release along with reproducibility packages to support ongoing evaluation efforts. This article introduces the curated dataset, incorporating details about software dependencies, execution steps, and configurations necessary for accurate reproduction. The dataset is structured to reflect diverse computational requirements and methodologies, ranging from simple scripts to complex, multi-language workflows, ensuring it presents the wide range of challenges researchers face in reproducing computational studies. It provides a universal benchmark by establishing a standardized dataset for objectively evaluating and comparing the effectiveness of reproducibility tools. Each experiment included in the dataset is carefully documented to ensure ease of use. We added clear instructions following a standard, so each experiment has the same kind of instructions, making it easier for researchers to run each of them with their own reproducibility tool.The utility of the dataset is demonstrated through extensive evaluations using multiple reproducibility tools.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.