Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CTM

2024

Energy-Efficiency Architectural Enhancements for Sensing-Enabled Mobile Networks

Authors
Conceicao, F; Teixeira, FB; Pessoa, LM; Robitzsch, S;

Publication
2024 IEEE CONFERENCE ON STANDARDS FOR COMMUNICATIONS AND NETWORKING, CSCN

Abstract
Sensing will be a key technology in 6G networks, enabling a plethora of new sensing-enabled use cases. Some of the use cases require deployments over a wide physical area that needs to be sensed by multiple sensing sources at different locations. The efficient management of the sensing resources is pivotal for sustainable sensing-enabled mobile network designs. In this paper, we provide an example of such use case, and argue the energy consumption due to sensing has potential to scale to prohibitive levels. We then propose architectural enhancements to solve this problem, and discuss energy saving and energy efficient strategies in sensing, that can only be properly quantified and applied with the proposed architectural enhancements.

2024

Dynamic Music Generation: Audio Analysis-Synthesis Methods

Authors
Bernardes, G; Cocharro, D;

Publication
Encyclopedia of Computer Graphics and Games

Abstract
[No abstract available]

2024

An End-to-End Framework to Classify and Generate Privacy-Preserving Explanations in Pornography Detection

Authors
Vieira, M; Goncalves, T; Silva, W; Sequeira, F;

Publication
BIOSIG 2024 - Proceedings of the 23rd International Conference of the Biometrics Special Interest Group

Abstract
The proliferation of explicit material online, particularly pornography, has emerged as a paramount concern in our society. While state-of-the-art pornography detection models already show some promising results, their decision-making processes are often opaque, raising ethical issues. This study focuses on uncovering the decision-making process of such models, specifically fine-tuned convolutional neural networks and transformer architectures. We compare various explainability techniques to illuminate the limitations, potential improvements, and ethical implications of using these algorithms. Results show that models trained on diverse and dynamic datasets tend to have more robustness and generalisability when compared to models trained on static datasets. Additionally, transformer models demonstrate superior performance and generalisation compared to convolutional ones. Furthermore, we implemented a privacy-preserving framework during explanation retrieval, which contributes to developing secure and ethically sound biometric applications. © 2024 IEEE.

2024

Massively Annotated Datasets for Assessment of Synthetic and Real Data in Face Recognition

Authors
Neto, PC; Mamede, RM; Albuquerque, C; Gonçalves, T; Sequeira, AF;

Publication
2024 IEEE 18TH INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION, FG 2024

Abstract
Face recognition applications have grown in parallel with the size of datasets, complexity of deep learning models and computational power. However, while deep learning models evolve to become more capable and computational power keeps increasing, the datasets available are being retracted and removed from public access. Privacy and ethical concerns are relevant topics within these domains. Through generative artificial intelligence, researchers have put efforts into the development of completely synthetic datasets that can be used to train face recognition systems. Nonetheless, the recent advances have not been sufficient to achieve performance comparable to the state-of-the-art models trained on real data. To study the drift between the performance of models trained on real and synthetic datasets, we leverage a massive attribute classifier (MAC) to create annotations for four datasets: two real and two synthetic. From these annotations, we conduct studies on the distribution of each attribute within all four datasets. Additionally, we further inspect the differences between real and synthetic datasets on the attribute set. When comparing through the Kullback-Leibler divergence we have found differences between real and synthetic samples. Interestingly enough, we have verified that while real samples suffice to explain the synthetic distribution, the opposite could not be further from being true.

2024

Using Source-to-Source to Target RISC-V Custom Extensions: UVE Case-Study

Authors
Henriques, M; Bispo, J; Paulino, N;

Publication
PROCEEDINGS OF THE RAPIDO 2024 WORKSHOP, HIPEAC 2024

Abstract
Hardware specialization is seen as a promising venue for improving computing efficiency, with reconfigurable devices as excellent deployment platforms for application-specific architectures. One approach to hardware specialization is via the popular RISC-V, where Instruction Set Architecture (ISA) extensions for domains such as Edge Artifical Intelligence (AI) are already appearing. However, to use the custom instructions while maintaining a high (e.g., C/C++) abstraction level, the assembler and compiler must be modified. Alternatively, inline assembly can be manually introduced by a software developer with expert knowledge of the hardware modifications in the RISC-V core. In this paper, we consider a RISC-V core with a vectorization and streaming engine to support the Unlimited Vector Extension (UVE), and propose an approach to automatically transform annotated C loops into UVE compatible code, via automatic insertion of inline assembly. We rely on a source-to-source transformation tool, Clava, to perform sophisticated code analysis and transformations via scripts. We use pragmas to identify code sections amenable for vectorization and/or streaming, and use Clava to automatically insert inline UVE instructions, avoiding extensive modifications of existing compiler projects. We produce UVE binaries which are functionally correct, when compared to handwritten versions with inline assembly, and achieve equal and sometimes improved number of executed instructions, for a set of six benchmarks from the Polybench suite. These initial results are evidence towards that this kind of translation is feasible, and we consider that it is possible in future work to target more complex transformations or other ISA extensions, accelerating the adoption of hardware/software co-design flows for generic application cases.

2024

A DSL and MLIR Dialect for Streaming and Vectorisation

Authors
da Silva, MC; Sousa, L; Paulino, N; Bispo, J;

Publication
APPLIED RECONFIGURABLE COMPUTING. ARCHITECTURES, TOOLS, AND APPLICATIONS, ARC 2024

Abstract
This work addresses the contemporary challenges in computing, caused by the stagnation of Moore's Law and Dennard scaling. The shift towards heterogeneous architectures necessitates innovative compilation strategies, prompting initiatives like the Multi-Level Intermediate Representation (MLIR) project, where progressive code lowering can be achieved through the use of dialects. Our work focuses on developing an MLIR dialect capable of representing streaming data accesses to memory, and Single Instruction Multiple Data (SIMD) vector operations. We also propose our own Structured Representation Language (SRL), a Design Specific Language (DSL) to serve as a precursor into the MLIR layer and subsequent inter-operation between new and existing dialects. The SRL exposes the streaming and vector computational concepts to a higher-level, and serves as intermediate step to supporting code generation containing our proposed dialect from arbitrary input code, which we leave as future work. This paper presents the syntaxes of the SRL DSL and of the dialect, and illustrates how we aim to employ them to target both General-Purpose Processors (GPPs) with SIMD co-processors and custom hardware options such as Field-Programmable Gate Arrayss (FPGAs) and Coarse-Grained Re-configurable Arrays (CGRAs).

  • 45
  • 394