Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CTM

2025

QoS-Aware Multimodal Underwater Wireless Networks

Authors
Cunha, FS; Loureiro, JP; Teixeira, FB; Campos, R;

Publication
OCEANS 2025 BREST

Abstract
The growing demands of the Blue Economy are increasingly supported by sensing platforms, including as Autonomous Surface Vehicles (ASVs) and Autonomous Underwater Vehicles (AUVs). Multimodal Underwater Wireless Networks (MUWNs), which may combine acoustic, radio-frequency, and optical wireless technologies, enhance underwater data transmission capabilities. Although Delay-Tolerant Networks (DTNs) address connectivity intermittency in such environments, not all data streams are delay-tolerant, and transmitting high-bandwidth DTN traffic over narrowband links can lead to significant inefficiencies. This paper presents QoS-MUWCom, a Quality of Service (QoS)-aware communication solution designed to manage both real-time and delay-tolerant traffic across dynamically selected multimodal interfaces. Experimental evaluations conducted in a freshwater tank demonstrate that QoS-MUWCom achieves near-zero packet loss for low-demand traffic even under link saturation, improves throughput for prioritized flows up to three times in mobility scenarios, and adapts to link availability and node mobility. The results confirm that QoS-MUWCom outperforms conventional multimodal strategies, contributing to more robust, resilient and efficient underwater communications.

2025

On the Resilience of Underwater Semantic Wireless Communications

Authors
Loureiro, JP; Delgado, P; Ribeiro, TF; Teixeira, FB; Campos, R;

Publication
OCEANS 2025 BREST

Abstract
Underwater wireless communications face significant challenges due to propagation constraints, limiting the effectiveness of traditional radio and optical technologies. Long-range acoustic communications support distances up to a few kilometers, but suffer from low bandwidth, high error ratios, and multipath interference. Semantic communications, which focus on transmitting extracted semantic features rather than raw data, present a promising solution by significantly reducing the volume of data transmitted over the wireless link. This paper evaluates the resilience of SAGE, a semantic-oriented communications framework that combines semantic processing with Generative Artificial Intelligence (GenAI) to compress and transmit image data as textual descriptions over acoustic links. To assess robustness, we use a custom-tailored simulator that introduces character errors observed in underwater acoustic channels. Evaluation results show that SAGE can successfully reconstruct meaningful image content even under varying error conditions, highlighting its potential for robust and efficient underwater wireless communication in harsh environments.

2025

Context-Aware Rate Adaptation for Predictable Flying Networks using Contextual Bandits

Authors
Queiros, R; Kaneko, M; Fontes, H; Campos, R;

Publication
IEEE Networking Letters

Abstract
The increasing complexity of wireless technologies, such as Wi-Fi, presents significant challenges for Rate Adaptation (RA) due to the large configuration space of transmission parameters. While extensive research has been conducted on RA for low-mobility networks, existing solutions fail to adapt in Flying Networks (FNs), where high mobility and dynamic wireless conditions introduce additional uncertainty. We propose Linear Upper Confidence Bound for RA (LinRA), a novel Contextual Bandit-based approach that leverages real-Time link context to optimize transmission rates in predictable FNs, where future trajectories are known. Simulation results demonstrate that LinRA converges 5.2× faster than benchmarks and improves throughput by 80% in Non Line-of-Sight conditions, matching the performance of ideal algorithms. © 2025 Elsevier B.V., All rights reserved.

2025

Context-aware Rate Adaptation for Predictive Flying Networks using Contextual Bandits

Authors
Queirós, R; Kaneko, M; Fontes, H; Campos, R;

Publication
CoRR

Abstract

2025

A Review on Distributed Voltage Regulators for High-Performance Integrated Circuits

Authors
Oliveira, G; Duarte, C; Santos, MB; Pina, M;

Publication
U.Porto Journal of Engineering

Abstract
Conventional power distribution networks (PDNs), in which individual voltage regulators power the entire integrated circuit (IC), are ineffective for high-power, large-area ICs. In highperformance systems-on-chip (SoCs) and microprocessors (in particular those designed for AI applications), shrinking technology nodes are leading to higher current densities, which impose thermal constraints and limit the portion of the chip that can be simultaneously powered (“dark silicon”). PDNs with point-of-load regulation offer a promising alternative. The distributed nature of their design inherently relaxes thermal constraints while minimizing high-current routing overhead (IR drops), thereby improving the PDN efficiency. In this work, the concept of on-chip distributed voltage regulation is introduced. Previously reported distributed voltage regulator designs are reviewed, emphasizing their major achievements and limitations. Then, the challenges that hinder a more ubiquitous adoption of such designs, namely stability (analysis) and unbalanced load sharing, are discussed. Existing solutions addressing these challenges are also presented. Finally, a comparative analysis of the performance of these regulators is presented, and insights into the future direction of distributed voltage regulation are offered. © (2025), (Universidade do Porto - Faculdade de Engenharia). All rights reserved.

2025

Edge-Enabled UAV Swarm Deployment for Rapid Post-Disaster Search and Rescue

Authors
Abdellatif, AA; Fontes, H; Coelho, A; Pessoa, LM; Campos, R;

Publication
2025 IEEE Virtual Conference on Communications (VCC)

Abstract

  • 14
  • 372