Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CRIIS

2023

A WSN Real-Time Monitoring System Approach for Measuring Indoor Air Quality Using the Internet of Things

Authors
Biondo, E; Brito, T; Nakano, A; Lima, J;

Publication
Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST

Abstract
Indoor Air Quality (IAQ) describes the air quality of a room, and it refers to the health and comfort of the occupants. Typically, people spend around 90% of their time in indoor environments where the concentration of air pollutants and, occasionally, more than 100 times higher than outdoor levels. According to the World Health Organization (WHO), indoor air pollution is responsible for the death of 3.8 million people annually. It has been indicated that IAQ in residential areas or buildings is significantly affected by three primary factors, they are outdoor air quality, human activity in buildings, and building and construction materials. In this context, this work consists of a real-time IAQ system to monitor thermal comfort and gas concentration. The system has a data acquisition stage, captured by the WSN with a set of sensors that measures the data and send it to be stored on the InfluxDB database and displayed on Grafana. A Linear Regression (LR) algorithm was used to predict the behavior of the measured parameters, scoring up to 99.7% of precision. Thereafter, prediction data is stored on InfluxDB in a new database and displayed on Grafana. In this way, it is possible to monitor the actual measurement data and prediction data in real-time. © 2023, ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering.

2023

Cooperative Heterogeneous Robots for Autonomous Insects Trap Monitoring System in a Precision Agriculture Scenario

Authors
Berger, GS; Teixeira, M; Cantieri, A; Lima, J; Pereira, AI; Valente, A; de Castro, GGR; Pinto, MF;

Publication
AGRICULTURE-BASEL

Abstract
The recent advances in precision agriculture are due to the emergence of modern robotics systems. For instance, unmanned aerial systems (UASs) give new possibilities that advance the solution of existing problems in this area in many different aspects. The reason is due to these platforms' ability to perform activities at varying levels of complexity. Therefore, this research presents a multiple-cooperative robot solution for UAS and unmanned ground vehicle (UGV) systems for their joint inspection of olive grove inspect traps. This work evaluated the UAS and UGV vision-based navigation based on a yellow fly trap fixed in the trees to provide visual position data using the You Only Look Once (YOLO) algorithms. The experimental setup evaluated the fuzzy control algorithm applied to the UAS to make it reach the trap efficiently. Experimental tests were conducted in a realistic simulation environment using a robot operating system (ROS) and CoppeliaSim platforms to verify the methodology's performance, and all tests considered specific real-world environmental conditions. A search and landing algorithm based on augmented reality tag (AR-Tag) visual processing was evaluated to allow for the return and landing of the UAS to the UGV base. The outcomes obtained in this work demonstrate the robustness and feasibility of the multiple-cooperative robot architecture for UGVs and UASs applied in the olive inspection scenario.

2023

Sensorial Testbed for High-Voltage Tower Inspection with UAVs

Authors
Berger, GS; Oliveira, A; Braun, J; Lima, J; Pinto, MF; Valente, A; Pereira, AI; Cantieri, AR; Wehrmeister, MA;

Publication
ROBOT2022: FIFTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, VOL 2

Abstract
This work presents a methodology for characterizing ultrasonic and LASER sensors aimed at detecting obstacles within the context of electrical inspections by multirotor Unmanned Aerial Vehicles (UAVs). A set of four ultrasonic and LASER sensor models is evaluated against eight target components, typically found in high-voltage towers. The results show that ultrasonic sensor arrays displaced 25. apart reduce the chances of problems related to crosstalk and angular uncertainty. Within the LASER sensor suite, solar exposure directly affects the detection behavior among lower power sensors. Based on the results obtained, a set of sensors capable of detecting multiple obstacles belonging to a high-voltage tower was identified. In this reasoning, it becomes possible to model sensor architectures for multirotor UAVs to detect multiple obstacles and advance in the state of the art in obstacle avoidance systems by UAVs in inspections of high-voltage towers.

2023

Multi-robot Coordination for a Heterogeneous Fleet of Robots

Authors
Pereira, D; Matos, D; Rebelo, P; Ribeiro, F; Costa, P; Lima, J;

Publication
ROBOT2022: FIFTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, VOL 2

Abstract
There is an increasing need for autonomous mobile robots (AMRs) in industrial environments. The capability of autonomous movement and transportation of items in industrial environments provides a significant increase in productivity and efficiency. This need, coupled with the possibility of controlling groups of heterogeneous robots, simultaneously addresses a wide range of tasks with different characteristics in the same environment, further increasing productivity and efficiency. This paper will present an implementation of a system capable of coordinating a fleet of heterogeneous robots with robustness. The implemented system must be able to plan a safe and efficient path for these different robots. To achieve this task, the TEA* (Time Enhanced A*) graph search algorithm will be used to coordinate the paths of the robots, along with a graph decomposition module that will be used to improve the efficiency and safety of this system. The project was implemented using the ROS framework and the Stage simulator. Results validate the proposed approach since the system was able to coordinate a fleet of robots in various different tests efficiently and safely, given the heterogeneity of the robots.

2023

3D tomatoes' localisation with monocular cameras using histogram filters

Authors
Magalhães, SC; dos Santos, FN; Moreira, AP; Dias, J;

Publication
CoRR

Abstract

2023

Sound-Based Anomalies Detection in Agricultural Robotics Application

Authors
Baltazar, AR; dos Santos, FN; Soares, SP; Moreira, AP; Cunha, JB;

Publication
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2023, PT II

Abstract
Agricultural robots are exposed to adverse conditions reducing the components' lifetime. To reduce the number of inspection, repair and maintenance activities, we propose using audio-based systems to diagnose and detect anomalies in these robots. Audio-based systems are non-destructive/intrusive solutions. Besides, it provides a significant amount of data to diagnose problems and for a wiser scheduler for preventive activities. So, in this work, we installed two microphones in an agricultural robot with a mowing tool. Real audio data was collected with the robotic mowing tool operating in several conditions and stages. Besides, a Sound-based Anomalies Detector (SAD) is proposed and tested with this dataset. The SAD considers a short-time Fourier transform (STFT) computation stage connected to a Support Vector Machine (SVM) classifier. The results with the collected dataset showed an F1 score between 95% and 100% in detecting anomalies in a mowing robot operation.

  • 66
  • 386