Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CRIIS

2018

Towards an Automatic Lung Cancer Screening System in Low Dose Computed Tomography

Authors
Aresta, G; Araujo, T; Jacobs, C; van Ginneken, B; Cunha, A; Ramos, I; Campilho, A;

Publication
IMAGE ANALYSIS FOR MOVING ORGAN, BREAST, AND THORACIC IMAGES

Abstract
We propose a deep learning-based pipeline that, given a low-dose computed tomography of a patient chest, recommends if a patient should be submitted to further lung cancer assessment. The algorithm is composed of a nodule detection block that uses the object detection framework YOLOv2, followed by a U-Net based segmentation. The found structures of interest are then characterized in terms of diameter and texture to produce a final referral recommendation according to the National Lung Screen Trial (NLST) criteria. Our method is trained using the public LUNA16 and LIDC-IDRI datasets and tested on an independent dataset composed of 500 scans from the Kaggle DSB 2017 challenge. The proposed system achieves a patient-wise recall of 89% while providing an explanation to the referral decision and thus may serve as a second opinion tool to speed-up and improve lung cancer screening.

2018

Convolutional Neural Network Architectures for Texture Classification of Pulmonary Nodules

Authors
Ferreira, CA; Cunha, A; Mendonça, AM; Campilho, A;

Publication
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications - 23rd Iberoamerican Congress, CIARP 2018, Madrid, Spain, November 19-22, 2018, Proceedings

Abstract
Lung cancer is one of the most common causes of death in the world. The early detection of lung nodules allows an appropriate follow-up, timely treatment and potentially can avoid greater damage in the patient health. The texture is one of the nodule characteristics that is correlated with the malignancy. We developed convolutional neural network architectures to classify automatically the texture of nodules into the non-solid, part-solid and solid classes. The different architectures were tested to determine if the context, the number of slices considered as input and the relation between slices influence on the texture classification performance. The architecture that obtained better performance took into account different scales, different rotations and the context of the nodule, obtaining an accuracy of 0.833 ± 0.041. © Springer Nature Switzerland AG 2019.

2018

Deep Homography Based Localization on Videos of Endoscopic Capsules

Authors
Pinheiro, G; Coelho, P; Salgado, M; Oliveira, HP; Cunha, A;

Publication
PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM)

Abstract
Endoscopic capsules are vitamin-sized devices that create 8 to 10 hour videos of the digestive tract. They are the leading diagnosing method for the small bowel, a region not easily accessible with traditional endoscopy techniques. However, these capsules do not provide localization information, even though it is crucial for the diagnosis, follow-ups and surgical interventions. Currently, the capsule localization is either estimated based on scarce gastrointestinal tract landmarks or given by additional hardware that causes discomfort to the patient and represents a cost increase. Current software methods show great potential, but still need to improve in order to overcome their limitations. In this work, a visual odometry method for capsule localization inside the small bowel is proposed.

2018

Radiologists' gaze characterization during lung nodule search in thoracic CT

Authors
Machado, M; Aresta, G; Leitao, P; Carvalho, AS; Rodrigues, M; Ramos, I; Cunha, A; Campilho, A;

Publication
2018 1ST INTERNATIONAL CONFERENCE ON GRAPHICS AND INTERACTION (ICGI 2018)

Abstract
Lung cancer diagnosis is made by radiologists through nodule search in chest Computed Tomography (CT) scans. This task is known to be difficult and prone to errors that can lead to late diagnosis. Although Computer-Aided Diagnostic (CAD) systems are promising tools to be used in clinical practice, experienced radiologists continue to perform better diagnosis than CADs. This paper proposes a methodology for characterizing the radiologist's gaze during nodules search in chest CT scans. The main goals are to identify regions that attract the radiologists' attention, which can then be used for improving a lung CAD system, and to create a tool to assist radiologists during the search task. For that purpose, the methodology processes the radiologists' gaze and their mouse coordinates during the nodule search. The resulting data is then processed to obtain a 3D gaze path from which relevant attention studies can be derived. To better convey the found information, a reference model of the lung that eases the communication of the location of relevant anatomical/pathological findings is also proposed. The methodology is tested on a set of 24 real-practice gazes, recorded via an Eye tracker, from 3 radiologists.

2018

Towards Modern Cost-Effective and Lightweight Augmented Reality Setups

Authors
Pádua, L; Adão, T; Narciso, D; Cunha, A; Magalhães, L; Peres, E;

Publication
Virtual and Augmented Reality

Abstract

2018

Unmanned Aerial Systems (UAS) for environmental applications special issue preface PREFACE

Authors
Milas, AS; Sousa, JJ; Warner, TA; Teodoro, AC; Peres, E; Goncalves, JA; Delgado Garcia, J; Bento, R; Phinn, S; Woodget, A;

Publication
INTERNATIONAL JOURNAL OF REMOTE SENSING

Abstract

  • 220
  • 386