Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CRIIS

2021

Autonomous Robot Visual-Only Guidance in Agriculture Using Vanishing Point Estimation

Authors
Sarmento, J; Aguiar, AS; dos Santos, FN; Sousa, AJ;

Publication
PROGRESS IN ARTIFICIAL INTELLIGENCE (EPIA 2021)

Abstract
Autonomous navigation in agriculture is very challenging as it usually takes place outdoors where there is rough terrain, uncontrolled natural lighting, constantly changing organic scenarios and sometimes the absence of a Global Navigation Satellite System (GNSS). In this work, a single camera and a Google coral dev Board Edge Tensor Processing Unit (TPU) setup is proposed to navigate among a woody crop, more specifically a vineyard. The guidance is provided by estimating the vanishing point and observing its position with respect to the central frame, and correcting the steering angle accordingly. The vanishing point is estimated by object detection using Deep Learning (DL) based Neural Networks (NN) to obtain the position of the trunks in the image. The NN's were trained using Transfer Learning (TL), which requires a smaller dataset than conventional training methods. For this purpose, a dataset with 4221 images was created considering image collection, annotation and augmentation procedures. Results show that our framework can detect the vanishing point with an average of the absolute error of 0.52. and can be considered for autonomous steering.

2021

Robot navigation in vineyards based on the visual vanish point concept

Authors
Sarmento, J; Aguiar, AS; Santos, FND; Sousa, AJ;

Publication
2021 International Symposium of Asian Control Association on Intelligent Robotics and Industrial Automation, IRIA 2021

Abstract
Autonomous navigation in agriculture is very challenging as it usually takes place outdoors where there is rough terrain, uncontrolled natural lighting, constantly changing organic scenarios and sometimes the absence of Global Navigation Satellite System (GNSS) signal. In this work, a monocular visual system is proposed to estimate angular orientation and navigate between woody crops, more specifically a vineyard, using a Proportional Integrative Derivative (PID)-based controller. The guidance is provided by combining two ways to find the center of the vineyard: First, by estimating the vanishing point and second, by averaging the position of the two closest base trunk detections. Then, by the monocular angle perception, the angular error is determined. For obtaining the trunk position in the image, object detection using Deep Learning (DL) based Neural Networks (NN) is used. To evaluate the proposed controller, a visual vineyard simulation is created using Gazebo. The proposed joint controller is able to travel along a simulated straight vineyard with an RMS error of 1.17 cm. Moreover, a simulated curved vineyard modeled after the Douro region is tested in this work, where the robot was able to steer with an RMS error of 7.28 cm. © 2021 IEEE.

2021

Unimodal and Multimodal Perception for Forest Management: Review and Dataset

Authors
da Silva, DQ; dos Santos, FN; Sousa, AJ; Filipe, V; Boaventura Cunha, J;

Publication
COMPUTATION

Abstract
Robotics navigation and perception for forest management are challenging due to the existence of many obstacles to detect and avoid and the sharp illumination changes. Advanced perception systems are needed because they can enable the development of robotic and machinery solutions to accomplish a smarter, more precise, and sustainable forestry. This article presents a state-of-the-art review about unimodal and multimodal perception in forests, detailing the current developed work about perception using a single type of sensors (unimodal) and by combining data from different kinds of sensors (multimodal). This work also makes a comparison between existing perception datasets in the literature and presents a new multimodal dataset, composed by images and laser scanning data, as a contribution for this research field. Lastly, a critical analysis of the works collected is conducted by identifying strengths and research trends in this domain.

2021

Robust human position estimation in cooperative robotic cells

Authors
Amorim, A; Guimares, D; Mendona, T; Neto, P; Costa, P; Moreira, AP;

Publication
ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING

Abstract
Robots are increasingly present in our lives, sharing the workspace and tasks with human co-workers. However, existing interfaces for human-robot interaction / cooperation (HRI/C) have limited levels of intuitiveness to use and safety is a major concern when humans and robots share the same workspace. Many times, this is due to the lack of a reliable estimation of the human pose in space which is the primary input to calculate the human-robot minimum distance (required for safety and collision avoidance) and HRI/C featuring machine learning algorithms classifying human behaviours / gestures. Each sensor type has its own characteristics resulting in problems such as occlusions (vision) and drift (inertial) when used in an isolated fashion. In this paper, it is proposed a combined system that merges the human tracking provided by a 3D vision sensor with the pose estimation provided by a set of inertial measurement units (IMUs) placed in human body limbs. The IMUs compensate the gaps in occluded areas to have tracking continuity. To mitigate the lingering effects of the IMU offset we propose a continuous online calculation of the offset value. Experimental tests were designed to simulate human motion in a human-robot collaborative environment where the robot moves away to avoid unexpected collisions with de human. Results indicate that our approach is able to capture the human's position, for example the forearm, with a precision in the millimetre range and robustness to occlusions.

2021

Performance Enhancement of a Neato XV-11 Laser Scanner Applied to Mobile Robot Localization: A Stochastic Modeling Approach

Authors
Gonçalves, J; Coelho, JP; Braz César, M; Costa, P;

Publication
CONTROLO 2020

Abstract
Laser scanners are widely used in mobile robotics localization systems but, despite the enormous potential of its use, their high price tag is a major drawback, mainly for hobbyist and educational robotics practitioners that usually have a reduced budget. The Neato XV-11 Laser Scanner is a very low cost alternative, when compared with the current available laser scanners, being this fact the main motivation for its use. The modeling of a hacked Neato XV-11 Laser Scanner allows to provide valuable information that can promote the development of better designs of robot localization systems based on this sensor. This paper presents, as an example, the performance enhancement of a Neato XV-11 Laser Scanner applied to mobile robot self-localization, being used as case study the Perfect Match Algorithm applied to the Robot@Factory competition. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021.

2021

Modeling of an elastic joint: An experimental setup approach

Authors
Pinto, VH; Lima, J; Gonçalves, J; Costa, P;

Publication
Lecture Notes in Electrical Engineering

Abstract
Throughout this paper it is presented a novel elastic joint configuration, being compared with other similar joints found in recent literature. It is presented its modeling, being its estimation process developed offline, based on a proposed experimental setup. This setup enables to monitor and collect data from an absolute encoder and a load cell. Some data obtained from these sensors is then graphically represented, like angle and torque, obtaining some parameters. Finally, through an optimization process, where the error of the angle is minimized, the remaining parameters of the joint are estimated, thus obtaining a realistic model of the system. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021.

  • 116
  • 386