Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by José Manuel Baptista

2015

New SPR PCF D-type optical fiber sensor configuration for refractive index measurement

Authors
Santos, DF; Guerreiro, A; Baptista, JM;

Publication
24TH INTERNATIONAL CONFERENCE ON OPTICAL FIBRE SENSORS

Abstract
This paper presents the performance analysis of a new geometry sensing configuration for refractive index, based on surface plasmon resonance (SPR) in photonic crystal fiber (PCF) D-type optical fiber with a thin gold layer, using the finite element method (FEM). The configuration is analyzed in terms of the loss. The results are compared with a conventional SPR D-type and with a PCF D-type optical fiber sensor for refractive index measurement. The simulation results show an improvement of the sensitivity and resolution (3.70x10(3)nm/RIU and 2.72x10(-5)RIU, respectively, when considering an accurately spectral variation detection of 0.1nm).

2016

Noveloptical current sensor for metering and protection in high power applications

Authors
Nascimento, IM; Brigida, ACS; Baptista, JM; Costa, JCWA; Martinez, MAG; Jorge, PAS;

Publication
INSTRUMENTATION SCIENCE & TECHNOLOGY

Abstract
A clamp-on optical current sensor prototype for metering and protection applications in high power systems was developed and characterized. The system is based on the Faraday effect in a low birefringence, high Verdet constant, 8cm long SF57 Schott glass prism. It was incorporated in a nylon casing suitable for clamp-on applications in the power line. The sensor operation was tested at 630nm, 830nm, and 1550nm to access its applicability in remote interrogation via fiber links. Optimal operation at 830nm is reported with a linear response up to 65.28kA, with 0.1 or 0.2 accuracy class considering a nominal currents of 1.2 and 0.3 kA (root mean square), respectively. Twelve calibrations procedures performed over six days showed an estimated maximum error of 11m A. Preliminary measurements were made from 40 to 400Hz. The sensor was exposed to transient signals less than 10 mu s that demonstrated its use in protection applications.

2015

Passive interferometric interrogation of a magnetic field sensor using an erbium doped fiber optic laser with magnetostrictive transducer

Authors
Nascimento, IM; Baptista, JM; Jorge, PAS; Cruz, JL; Andres, MV;

Publication
SENSORS AND ACTUATORS A-PHYSICAL

Abstract
An erbium doped (Er3+) fiber optic laser is proposed for magnetic field measurement. A pair of FBGs glued onto a magnetostrictive material (Terfenol-D rod) modulates the laser wavelength operation when subject to a static or a time dependent magnetic field. A passive interferometer is employed to measure the laser wavelength changes due to the applied magnetic field. A data acquisition hardware and a Lab VIEW software measure three phase-shifted signals at the output coupler of the interferometer and process them using two distinct demodulation algorithms. Results show that sensitivity to varying magnetic fields can be tuned by introducing a biasing magnetic field. A maximum error of 0.79% was found, for magnetic fields higher than 2.26 mT(RMS).

2013

Application of a Photonic Crystal Fiber LPG for vibration monitoring

Authors
Nascimento, IM; Chesini, G; Sousa, M; Osorio, JH; Baptista, JM; Cordeiro, CMB; Jorge, PAS;

Publication
FIFTH EUROPEAN WORKSHOP ON OPTICAL FIBRE SENSORS

Abstract
A fiber optic sensor based on a long-period grating (LPG) inscribed in a photonic crystal fiber is investigated for vibration sensing for structural monitoring applications. In this paper, preliminary results are shown demonstrating the sensor ability to detect vibration induced in a test structure. The sensor frequency response when attached to a loudspeaker-acrylic plate stimulation system (tested in the range from 40 Hz to 2.5 kHz) is analyzed using an intensity based scheme with a tunable laser. An alternative interrogation scheme, where the vibration signal is retrieved from a spectral scan, is also demonstrated and analyzed showing promising characteristics for structural health monitoring.

2014

Characterization of a hybrid Fabry-Perot Cavity based on a four-bridge double-Y-shape-core microstructured fiber

Authors
Pinto, AMR; Lopez Aldaba, A; Lopez Amo, M; Frazao, O; Santos, JL; Baptista, JM; Baierl, H; Auguste, JL; Jamier, R; Roy, P;

Publication
Proceedings of SPIE - The International Society for Optical Engineering

Abstract
In this work, a hybrid Fabry-Perot interferometer based on a novel four-bridge microstructured fiber is presented and characterized. The characterization of this cavity is performed in the L-band using two different instruments: an optical spectrum analyzer and an optical backscatter reflectometer. The Fabry-Perot output signal presents linear variation with temperature changes (sensitivity 9.8-11.9 pm/°C), variation with the polarization states of light and high stability. © 2014 SPIE.

2013

Characterization of a novel dissolved CO2 sensor for utilization in environmental monitoring and aquaculture industry

Authors
Balogh, K; Jesus, JM; Gouveia, C; Domingues, JO; Markovics, A; Baptista, JM; Kovacs, B; Pereira, CM; Borges, MT; Jorge, PAS;

Publication
8TH IBEROAMERICAN OPTICS MEETING AND 11TH LATIN AMERICAN MEETING ON OPTICS, LASERS, AND APPLICATIONS

Abstract
A novel optical fiber sensor is presented for measuring dissolved CO2 for water quality monitoring applications, where the optical signal is based either on refractive index changes or on color change. The sensing chemistry is based on the acid-basic equilibrium of 4-nitrophenol, that is converted into the anionic form by addition quaternary ammonium hydroxide. The CO2 sensitive layer was characterized and tested by using simple absorbance/reflectance measurement setups where the sensor was connected to a fiber optic CCD spectrometer. A prototype simulating a real shallow raceway aquaculture system was developed and its hydraulic behavior characterized. A commercially available partial-pressure-NDIR sensor was used as a reference for dissolved CO2 tests with the new optical fiber sensor under development. Preliminary tests allowed verifying the suitability of the new optical sensor for accurately tracking the dissolved carbon dioxide concentration in a suitable operation range. Direct comparison of the new sensor and the reference sensor system allowed to demonstrate the suitability of the new technology but also to identify some fragilities there are presently being addressed.

  • 2
  • 28