Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by José Manuel Baptista

2015

Ammonia sensing system based on wavelength modulation spectroscopy

Authors
Viveiros, D; Ferreira, J; Silva, SO; Ribeiro, J; Flores, D; Santos, JL; Frazao, O; Baptista, JM;

Publication
Photonic Sensors

Abstract
A sensing system in the near infrared region has been developed for ammonia sensing based on the wavelength modulation spectroscopy (WMS) principle. The WMS is a rather sensitive technique for detecting atomic/molecular species, presenting the advantage that it can be used in the near-infrared region by using the optical telecommunications technology. In this technique, the laser wavelength and intensity were modulated by applying a sine wave signal through the injection current, which allowed the shift of the detection bandwidth to higher frequencies where laser intensity noise was typically lower. Two multi-pass cells based on free space light propagation with 160 cm and 16 cm of optical path length were used, allowing the redundancy operation and technology validation. This system used a diode laser with an emission wavelength at 1512.21 nm, where NH3 has a strong absorption line. The control of the NH3 gas sensing system, as well as acquisition, processing and data presentation was performed. © 2015, The Author(s).

2015

Fiber Optic Sensing System for Temperature and Gas Monitoring in Coal Waste Pile Combustion Environments

Authors
Viveiros, D; Ribeiro, J; Ferreira, J; Lopez Aldaba, A; Pinto, AMR; Perez Herrera, RA; Diaz, S; Lopez Gil, A; Dominguez Lopez, A; Esteban, O; Martin Lopez, S; Auguste, JL; Jamier, R; Rougier, S; Silva, SO; Frazao, O; Santos, JL; Flores, D; Roy, P; Gonzalez Herraez, M; Lopez Amo, M; Baptista, JM;

Publication
24TH INTERNATIONAL CONFERENCE ON OPTICAL FIBRE SENSORS

Abstract
It is presented an optical fiber sensing system projected to operate in the demanding conditions associated with coal waste piles in combustion. Distributed temperature measurement and spot gas sensing are requirements for such a system. A field prototype has been installed and is continuously gathering data, which will input a geological model of the coal waste piles in combustion aiming to understand their dynamics and evolution. Results are presented on distributed temperature and ammonia measurement, being noticed any significant methane emission in the short time period considered. Carbon dioxide is also a targeted gas for measurement, with validated results available soon. The assessment of this technology as an effective and reliable tool to address the problem of monitoring coal waste piles in combustion opens the possibility of its widespread application in view of the worldwide presence of coal related fires.

2015

Intensity-Modulated Optical Fiber Sensor for AC Magnetic Field Detection

Authors
Nascimento, IM; Baptista, JM; Jorge, PAS; Cruz, JL; Andres, MV;

Publication
IEEE PHOTONICS TECHNOLOGY LETTERS

Abstract
An erbium-doped (Er3+) fiber optic laser is proposed for sensing alternated magnetic fields by measuring the laser intensity modulation. The sensor is fabricated using two partially overlapped narrow-band fiber Bragg gratings (FBGs) and a section of doped fiber in a Fabry-Perot configuration. Laser power stability and bandwidth are studied while changing the overlap. A bulk rod of TbDyFe, a magnetostrictive material, is glued to both the FBGs and the laser wavelength and power are modulated according to the magnetic field. Acquisition and processing are done using virtual instrumentation. Results have shown the possibility of detecting 11.18 mu T-rms/root Hz for an alternating magnetic field of 4.17 mT(rms).

2016

LPG-based sensor for curvature and vibration

Authors
Nascimento, IM; Chesini, G; Baptista, JM; Cordeiro, CMB; Jorge, PAS;

Publication
Proceedings of SPIE - The International Society for Optical Engineering

Abstract
A long-period grating (LPG) written on a standard single mode fiber is investigated as a curvature and vibration sensor. It is demonstrated a high sensitivity to applied curvature and the possibility to monitor vibration in a wide range of frequencies from 30 Hz to 2000 Hz. The system was tested using an intensity based interrogation scheme with the LPG sensor operating in the curvature regime. Results have shown a reproducible frequency discrimination in the 30 Hz to 2000 Hz, with resolutions between 11 mHz and 913 mHz. Frequency retrieval could be performed independent of temperature up to 86 °C. © 2016 SPIE.

2015

Magnetic field measurement using a fiber laser sensor in ring arrangement

Authors
Nascimento, IM; Baptista, JM; Jorge, PAS; Cruz, JL; Andres, MV;

Publication
OPTICAL SENSORS 2015

Abstract
In this work an optical fiber laser with loop configuration was developed for magnetic field measurement. The transducer element is an FBG written in a HiBi fiber whose wavelength is modified using a magnetostrictive material that applies deformation in the presence of the magnetic field. The laser has a bandwidth of 450 MHz and operates in single polarization. A shift of 258.5 pm was observed in the laser operating wavelength for a magnetic field of 17.85 mT. Moreover, a maximum sensitivity of 14.72 pm/mT in the linear regime operation was achieved when increasing the magnetic field. The system provides a narrow emission line that is dependent on the magnetic field magnitude enabling high resolution interferometric measurement schemes. The laser response to AC magnetic fields was also characterized using a passive interferometer with higher sensitivity in the range of 8.32 to 17.93 mT(RMS).

2015

Modal Filtering for Optimized Surface Plasmon Resonance Sensing in Multimode Plastic Optical Fibers

Authors
Cennamo, N; Coelho, L; Santos, DF; Baptista, JM; Guerreiro, A; Jorge, PAS; Zeni, LG;

Publication
IEEE SENSORS JOURNAL

Abstract
In this paper, we present the numerical and the experimental results of a new low cost surface plasmon resonance sensor configuration. It is based on a plasmonic sensor platform and an efficient higher order modes filtering in plastic multimode fibers, exploiting a tapered plastic optical fiber at the output of the sensor system. The experimental results have demonstrated that the tapered filter positioned after the sensor system improves the performances in terms of refractive index range and depth of the resonance curve. The results are in agreement with the numerical simulations.

  • 1
  • 31