Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CRAS

2026

Underwater SLAM and Calibration with a 3D Profiling Sonar

Authors
Ferreira, A; Almeida, J; Matos, A; Silva, E;

Publication
Remote Sensing

Abstract
High resolution underwater mapping is fundamental to the sustainable development of the blue economy, supporting offshore energy expansion, marine habitat protection, and the monitoring of both living and non-living resources. This work presents a pose-graph SLAM and calibration framework specifically designed for 3D profiling sonars, such as the Coda Octopus Echoscope 3D. The system integrates a probabilistic scan matching method (3DupIC) for direct registration of 3D sonar scans, enabling accurate trajectory and map estimation even under degraded dead reckoning conditions. Unlike other bathymetric SLAM methods that rely on submaps and assume short-term localization accuracy, the proposed approach performs direct scan-to-scan registration, removing this dependency. The factor graph is extended to represent the sonar extrinsic parameters, allowing the sonar-to-body transformation to be refined jointly with trajectory optimization. Experimental validation on a challenging real world dataset demonstrates outstanding localization and mapping performance. The use of refined extrinsic parameters further improves both accuracy and map consistency, confirming the effectiveness of the proposed joint SLAM and calibration approach for robust and consistent underwater mapping.

2026

Mapping Ethics in EPS@ISEP Robotics Projects

Authors
Malheiro, B; Guedes, P; F Silva, MF; Ferreira, PD;

Publication
Lecture Notes in Networks and Systems

Abstract
The European Project Semester (EPS), offered by the Instituto Superior de Engenharia do Porto (ISEP), is a capstone programme designed for undergraduate students in engineering, product design, and business. EPS@ISEP fosters project-based learning, promotes multicultural and interdisciplinary teamwork, and ethics- and sustainability-driven design. This study applies Natural Language Processing techniques, specifically text mining, to analyse project papers produced by EPS@ISEP teams. The proposed method aims to identify evidence of ethical concerns within EPS@ISEP projects. An innovative keyword mapping approach is introduced that first defines and refines a list of ethics-related keywords through prompt engineering. This enriched list of keywords is then used to systematically map the content of project papers. The findings indicate that the EPS@ISEP robotics project papers analysed demonstrate awareness of ethical considerations and actively incorporate them into design processes. The method presented is adaptable to various application areas, such as monitoring compliance with responsible innovation or sustainability policies. © 2025 Elsevier B.V., All rights reserved.

2026

A framework for supporting the reproducibility of computational experiments in multiple scientific domains

Authors
Costa, L; Barbosa, S; Cunha, J;

Publication
Future Gener. Comput. Syst.

Abstract
In recent years, the research community, but also the general public, has raised serious questions about the reproducibility and replicability of scientific work. Since many studies include some kind of computational work, these issues are also a technological challenge, not only in computer science, but also in most research domains. Computational replicability and reproducibility are not easy to achieve due to the variety of computational environments that can be used. Indeed, it is challenging to recreate the same environment via the same frameworks, code, programming languages, dependencies, and so on. We propose a framework, known as SciRep, that supports the configuration, execution, and packaging of computational experiments by defining their code, data, programming languages, dependencies, databases, and commands to be executed. After the initial configuration, the experiments can be executed any number of times, always producing exactly the same results. Our approach allows the creation of a reproducibility package for experiments from multiple scientific fields, from medicine to computer science, which can be re-executed on any computer. The produced package acts as a capsule, holding absolutely everything necessary to re-execute the experiment. To evaluate our framework, we compare it with three state-of-the-art tools and use it to reproduce 18 experiments extracted from published scientific articles. With our approach, we were able to execute 16 (89%) of those experiments, while the others reached only 61%, thus showing that our approach is effective. Moreover, all the experiments that were executed produced the results presented in the original publication. Thus, SciRep was able to reproduce 100% of the experiments it could run. © 2025 The Authors

2026

Crisis or Redemption with AI and Robotics? The Dawn of a New Era

Authors
Silva, MF; Tokhi, MO; Ferreira, MIA; Malheiro, B; Guedes, P; Ferreira, P; Costa, MT;

Publication
Lecture Notes in Networks and Systems

Abstract

2025

Towards Adaptive Acoustic Signals for Enhanced Detection in Underwater Localization

Authors
Graça, PA; Alves, JC; Ferreira, BM;

Publication
OCEANS 2025 - Great Lakes

Abstract

2025

Wavelet-Based Discriminant Feature Analysis of Marine Plastic Litter Spectra and Matching via Magnitude Gradient Cosine Similarity

Authors
Maravalhas-Silva, J; Cruz, NA;

Publication
OCEANS 2025 - Great Lakes

Abstract

  • 1
  • 180