Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CRAS

2023

Automatic characterisation of Dansgaard-Oeschger events in palaeoclimate ice records

Authors
Barbosa, S; Silva, ME; Dias, N; Rousseau, D;

Publication

Abstract
Greenland ice core records display abrupt transitions, designated as Dansgaard-Oeschger (DO) events, characterised by episodes of rapid warming (typically decades) followed by a slower cooling. The identification of abrupt transitions is hindered by the typical low resolution and small size of paleoclimate records, and their significant temporal variability. Furthermore, the amplitude and duration of the DO events varies substantially along the last glacial period, which further hinders the objective identification of abrupt transitions from ice core records Automatic, purely data-driven methods, have the potential to foster the identification of abrupt transitions in palaeoclimate time series in an objective way, complementing the traditional identification of transitions by visual inspection of the time series.In this study we apply an algorithmic time series method, the Matrix Profile approach, to the analysis of the NGRIP Greenland ice core record, focusing on:- the ability of the method to retrieve in an automatic way abrupt transitions, by comparing the anomalies identified by the matrix profile method with the expert-based identification of DO events;- the characterisation of DO events, by classifying DO events in terms of shape and identifying events with similar warming/cooling temporal patternThe results for the NGRIP time series show that the matrix profile approach struggles to retrieve all the abrupt transitions that are identified by experts as DO events, the main limitation arising from the diversity in length of DO events and the method’s dependence on fixed-size sub-sequences within the time series. However, the matrix profile method is able to characterise the similarity of shape patterns between DO events in an objective and consistent way.

2023

Temporal variability of gamma radiation and aerosol concentration over the North Atlantic ocean

Authors
Dias, N; Amaral, G; Almeida, C; Ferreira, A; Camilo, A; Silva, E; Barbosa, S;

Publication

Abstract
<p>Gamma radiation measured over the ocean is mainly due to airborne radionuclides, as gamma emission by radon degassing from the ocean is negligible. Airborne gamma-emitting elements include radon progeny (Pb-2114, Bi-214, Pb-210) and cosmogenic radionuclides such as Be-7. Radon progeny attaches readily to aerosols, thus the fate of gamma-emitting radon progeny, after its formation by radioactive decay from radon, is expected to be closely linked to that of aerosols.</p> <p>Gamma radiation measurements over the Atlantic Ocean were made on board the ship-rigged sailing ship NRP Sagres in the framework of project SAIL (Space-Atmosphere-Ocean Interactions in the marine boundary Layer). The measurements were performed continuously with a NaI(Tl) scintillator counting all gamma rays from 475 keV to 3 MeV.  </p> <p>The counts from the sensor were recorded every 1 second into a computer system which had his time reference corrected by a GNSS pulse per second (PPS) signal. The GNSS was also used to precisely position the ship. The measurements were performed over the Atlantic ocean from January to May 2020, along the ship’s round trip from Lisboa - Cape Verde – Rio de Janeiro – Buenos Aires – Cape Town – Cape Verde - Lisboa.</p> <p>The results show that the gamma radiation time series displays considerable higher counts and larger variability in January compared to the remaining period. Reanalysis data also indicate higher aerosol concentration. This work investigates in detail the association between the temporal evolution of the gamma radiation measurements obtained from the SAIL campaign over the Atlantic Ocean and co-located total aerosol concentration at 550 nm obtained every 3 hours from EAC4(ECMWF Atmospheric Composition Reanalysis 4) data.</p>

2023

The MONET dataset: Multimodal drone thermal dataset recorded in rural scenarios

Authors
Riz L.; Caraffa A.; Bortolon M.; Mekhalfi M.L.; Boscaini D.; Moura A.; Antunes J.; Dias A.; Silva H.; Leonidou A.; Constantinides C.; Keleshis C.; Abate D.; Poiesi F.;

Publication
IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops

Abstract
We present MONET, a new multimodal dataset captured using a thermal camera mounted on a drone that flew over rural areas, and recorded human and vehicle activities. We captured MONET to study the problem of object localisation and behaviour understanding of targets undergoing large-scale variations and being recorded from different and moving viewpoints. Target activities occur in two different land sites, each with unique scene structures and cluttered backgrounds. MONET consists of approximately 53K images featuring 162K manually annotated bounding boxes. Each image is timestamp-aligned with drone metadata that includes information about attitudes, speed, altitude, and GPS coordinates. MONET is different from previous thermal drone datasets because it features multimodal data, including rural scenes captured with thermal cameras containing both person and vehicle targets, along with trajectory information and metadata. We assessed the difficulty of the dataset in terms of transfer learning between the two sites and evaluated nine object detection algorithms to identify the open challenges associated with this type of data. Project page: https://github.com/fabiopoiesi/monet-dataset.

2023

Interpretable Classification of Wiki-Review Streams

Authors
García-Méndez, S; Leal, F; Malheiro, B; Burguillo-Rial, JC;

Publication
IEEE ACCESS

Abstract
Wiki articles are created and maintained by a crowd of editors, producing a continuous stream of reviews. Reviews can take the form of additions, reverts, or both. This crowdsourcing model is exposed to manipulation since neither reviews nor editors are automatically screened and purged. To protect articles against vandalism or damage, the stream of reviews can be mined to classify reviews and profile editors in real-time. The goal of this work is to anticipate and explain which reviews to revert. This way, editors are informed why their edits will be reverted. The proposed method employs stream-based processing, updating the profiling and classification models on each incoming event. The profiling uses side and content-based features employing Natural Language Processing, and editor profiles are incrementally updated based on their reviews. Since the proposed method relies on self-explainable classification algorithms, it is possible to understand why a review has been classified as a revert or a non-revert. In addition, this work contributes an algorithm for generating synthetic data for class balancing, making the final classification fairer. The proposed online method was tested with a real data set from Wikivoyage, which was balanced through the aforementioned synthetic data generation. The results attained near-90% values for all evaluation metrics (accuracy, precision, recall, and F-measure).

2023

Telco customer top-ups: Stream-based multi-target regression

Authors
Alves, PM; Filipe, RA; Malheiro, B;

Publication
EXPERT SYSTEMS

Abstract
Telecommunication operators compete not only for new clients, but, above all, to maintain current ones. The modelling and prediction of the top-up behaviour of prepaid mobile subscribers allows operators to anticipate customer intentions and implement measures to strengthen customer relationship. This research explores a data set from a Portuguese operator, comprising 30 months of top-up events, to predict the top-up monthly frequency and average value of prepaid subscribers using offline and online multi-target regression algorithms. The offline techniques adopt a monthly sliding window, whereas the online techniques use an event sliding window. Experiments were performed to determine the most promising set of features, analyse the accuracy of the offline and online regressors and the impact of sliding window dimension. The results show that online regression outperforms the offline counterparts. The best accuracy was achieved with adaptive model rules and a sliding window of 500,000 events (approximately 5 months). Finally, the predicted top-up monthly frequency and average value of each subscriber were converted to individual date and value intervals, which can be used by the operator to identify early signs of subscriber disengagement and immediately take pre-emptive measures.

2023

Insect Farming – An EPS@ISEP 2022 Project

Authors
Copinet, B; Flügge, F; Margetich, LC; Vandepitte, M; Petrache, PL; Duarte, AJ; Malheiro, B; Ribeiro, C; Justo, J; Silva, MF; Ferreira, P; Guedes, P;

Publication
Lecture Notes in Educational Technology

Abstract
Intensive cattle farming as a means of protein production contributes with the direct emission of greenhouse gases and the indirect contamination of soil and water. The public awareness towards this issue is growing in western cultures, leading to the stagnation of meat consumption and to the willingness to adopt alternative sustainable sources of protein. A solution is to farm insects as they present a reduced environmental impact and constitute a well-known source of protein. However, for westerners, eating insects implies a cultural change as they are still seen as dirty and disgusting. In 2022, a team of five EPS@ISEP students chose to design a solution for this problem followed by the assembly and test of the corresponding proof-of-concept prototype. They decided to design a home farming kit to grow mealworms driven by ethical, sustainable and the market needs. Exploring the insect life-cycle, the kit provides protein for humans and animals, chitin for soil bacteria and frass for plants. It can also be used as an educational tool for children to learn about sustainability, social responsibility and insect life-cycles, helping to overtake the cultural barrier against insect eating from a young age. © 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

  • 29
  • 180