Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CRACS

2023

Data and Knowledge for Overtaking Scenarios in Autonomous Driving

Authors
Pinto, M; Dutra, I; Fonseca, J;

Publication
CoRR

Abstract

2023

An Online Anomaly Detection Approach for Fault Detection on Fire Alarm Systems

Authors
Tome, ES; Ribeiro, RP; Dutra, I; Rodrigues, A;

Publication
SENSORS

Abstract
The early detection of fire is of utmost importance since it is related to devastating threats regarding human lives and economic losses. Unfortunately, fire alarm sensory systems are known to be prone to failures and frequent false alarms, putting people and buildings at risk. In this sense, it is essential to guarantee smoke detectors' correct functioning. Traditionally, these systems have been subject to periodic maintenance plans, which do not consider the state of the fire alarm sensors and are, therefore, sometimes carried out not when necessary but according to a predefined conservative schedule. Intending to contribute to designing a predictive maintenance plan, we propose an online data-driven anomaly detection of smoke sensors that model the behaviour of these systems over time and detect abnormal patterns that can indicate a potential failure. Our approach was applied to data collected from independent fire alarm sensory systems installed with four customers, from which about three years of data are available. For one of the customers, the obtained results were promising, with a precision score of 1 with no false positives for 3 out of 4 possible faults. Analysis of the remaining customers' results highlighted possible reasons and potential improvements to address this problem better. These findings can provide valuable insights for future research in this area.

2023

Improving the Characterization and Comparison of Football Players with Spatial Flow Motifs

Authors
Barbosa, A; Ribeiro, P; Dutra, I;

Publication
COMPLEX NETWORKS AND THEIR APPLICATIONS XI, COMPLEX NETWORKS 2022, VOL 2

Abstract
Association Football is probably the world's most popular sport. Being able to characterise and compare football players is therefore a very important and impactful task. In this work we introduce spatial flow motifs as an extension of previous work on this problem, by incorporating both temporal and spatial information into the network analysis of football data. Our approach considers passing sequences and the role of the player in those sequences, complemented with the physical position of the field where the passes occurred. We provide experimental results of our proposed methodology on real-life event data from the Italian League, showing we can more accurately identify players when compared to using purely topological data.

2023

Skynet: a Cyber-Aware Intrusion Tolerant Overseer

Authors
Freitas, T; Soares, J; Correia, ME; Martins, R;

Publication
2023 53RD ANNUAL IEEE/IFIP INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS AND NETWORKS - SUPPLEMENTAL VOLUME, DSN-S

Abstract
The increasing level of sophistication of cyber attacks which are employing cross-cutting strategies that leverage multi-domain attack surfaces, including but not limited to, software defined networking poisoning, biasing of machine learning models to suppress detection, exploiting software (development), and leveraging system design deficiencies. While current defensive solutions exist, they only partially address multi-domain and multi-stage attacks, thus rendering them ineffective to counter the upcoming generation of attacks. More specifically, we argue that a disruption is needed to approach separated knowledge domains, namely Intrusion Tolerant systems, cybersecurity, and machine learning. We argue that current solutions tend to address different concerns/facets of overlapping issues and they tend to make strong assumptions of supporting infrastructure, e.g., assuming that event probes/metrics are not compromised. To address these issues, we present Skynet, a platform that acts as a secure overseer that merges traditional roles of SIEMs with conventional orchestrators while being rooted on the fundamentals introduced by previous generations of intrusion tolerant systems. Our goal is to provide an open-source intrusion tolerant platform that can dynamically adapt to known and unknown security threats in order to reduce potential vulnerability windows.

2023

Deterministic or probabilistic?- A survey on Byzantine fault tolerant state machine replication

Authors
Freitas, T; Soares, J; Correia, ME; Martins, R;

Publication
COMPUTERS & SECURITY

Abstract
Byzantine Fault tolerant (BFT) protocols are implemented to guarantee the correct system/application behavior even in the presence of arbitrary faults (i.e., Byzantine faults). Byzantine Fault tolerant State Machine Replication (BFT-SMR) is a known software solution for masking arbitrary faults and malicious attacks (Liu et al., 2020). In this survey, we present and discuss relevant BFT-SMR protocols, focusing on deterministic and probabilistic approaches. The main purpose of this paper is to discuss the characteristics of proposed works for each approach, as well as identify the trade-offs for each different approach.& COPY; 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )

2023

From random-walks to graph-sprints: a low-latency node embedding framework on continuous-time dynamic graphs

Authors
Eddin, AN; Bono, J; Aparício, D; Ferreira, H; Ascensao, J; Ribeiro, P; Bizarro, P;

Publication
PROCEEDINGS OF THE 4TH ACM INTERNATIONAL CONFERENCE ON AI IN FINANCE, ICAIF 2023

Abstract
Many real-world datasets have an underlying dynamic graph structure, where entities and their interactions evolve over time. Machine learning models should consider these dynamics in order to harness their full potential in downstream tasks. Previous approaches for graph representation learning have focused on either sampling khop neighborhoods, akin to breadth-first search, or random walks, akin to depth-first search. However, these methods are computationally expensive and unsuitable for real-time, low-latency inference on dynamic graphs. To overcome these limitations, we propose graph-sprints a general purpose feature extraction framework for continuous-time-dynamic-graphs (CTDGs) that has low latency and is competitive with state-of-the-art, higher latency models. To achieve this, a streaming, low latency approximation to the random-walk based features is proposed. In our framework, time-aware node embeddings summarizing multi-hop information are computed using only single-hop operations on the incoming edges. We evaluate our proposed approach on three open-source datasets and two in-house datasets, and compare with three state-of-the-art algorithms (TGN-attn, TGN-ID, Jodie). We demonstrate that our graph-sprints features, combined with a machine learning classifier, achieve competitive performance (outperforming all baselines for the node classification tasks in five datasets). Simultaneously, graphsprints significantly reduce inference latencies, achieving close to an order of magnitude speed-up in our experimental setting.

  • 21
  • 207