2025
Authors
Fattaheian Dehkordi, S; Sampaio, G; Lehtonen, M;
Publication
2025 IEEE International Conference on Environment and Electrical Engineering and 2025 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)
Abstract
The rapid proliferation of uncontrolled resources poses significant voltage regulation challenges in low-voltage (LV) distribution grids. In this condition, conventional charging strategies, often based on fixed or static schedules, may lead to adverse voltage deviations under unpredictable load conditions and variable renewable generation. To address these challenges, this paper studies a hybrid deep reinforcement learning (DRL) framework based on a Proximal Policy Optimization (PPO) policy network enriched by a Graph Convolution Variation (GCV) feature extractor to improve voltage regulation issues in LV grids. In addition to ensuring that electric vehicles (EVs) achieve their required state-of-charge (SoC), the framework dynamically adjusts charging rates in real time to maintain LV-grid voltage within acceptable limits. Extensive simulation results, including detailed analysis and comparisons with the static charging method, demonstrate significant improvements in voltage regulation, and enhanced overall grid performance. The obtained results demonstrate the effectiveness of controlling EVs' charging controls in an intelligent manner to address the voltage regulation issue in low-voltage grids. © 2025 Elsevier B.V., All rights reserved.
2025
Authors
Rodrigues, L; Silva, R; Macedo, P; Faria, S; Cruz, F; Paulos, J; Mello, J; Soares, T; Villar, J;
Publication
2025 21ST INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET, EEM
Abstract
Planning Energy communities (ECs) requires engaging members, designing business models and governance rules, and sizing distributed energy resources (DERs) for a cost-effective investment. Meanwhile, the growing share of non-dispatchable renewable generation demands more flexible energy systems. Local flexibility markets (LFMs) are emerging as effective mechanisms to procure this flexibility, granting ECs a new revenue stream. Since sizing with flexibility becomes a highly complex problem, we propose a 2-stage methodology for estimating DERs size in an EC with collective self-consumption, flexibility provision and cross-sector (CS) assets such as thermal loads and electric vehicles (EVs). The first stage computes the optimal DER capacities to be installed for each member without flexibility provision. The second stage departs from the first stage capacities to assess how to modify the initial capacities to profit from providing flexibility. The impact of data clustering and flexibility provision are assessed through a case study.
2025
Authors
Marques A.; Coelho A.; Soares F.;
Publication
2025 IEEE Kiel Powertech Powertech 2025
Abstract
This paper proposes a stochastic optimization model for industrial hubs to enable their participation in energy markets. The model aims to leverage the resources of multi-energy systems to minimize energy costs in the day-ahead market. It accounts for uncertainties in photovoltaic generation, electrical and heat demand, and outdoor temperatures. A comparison is made with a deterministic approach, along with an analysis of the impact of thermal storage and reserve market participation on costs and bidding strategies. The results show that the stochastic approach is more conservative than the deterministic, while the integration of thermal storage and reserve services help decrease costs.
2025
Authors
Javadi, MS; Soares, TA; Villar, JV; Faria, AS;
Publication
2025 IEEE International Conference on Environment and Electrical Engineering and 2025 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)
Abstract
This paper deals with cost-effective strategies for controlling indoor temperature using different technologies, including inverter-based and thermostatic control systems. In this regard, the indoor temperature control model incorporates instant heat loss coefficient, heat transfer capability, and heat energy conversion coefficient. The decision variable is the power setpoint of the energy conversion system, which can be operated in both cooling and heating modes. The thermal system coefficients have been estimated based on historical data for energy consumption, indoor, and outdoor temperatures of the case study presented, which are the minimal datasets required for the coefficient estimation. The inverter-based model benefits from the quasi-continuous power consumption model, while the thermostatic model has a hysteresis functionality resulting in discrete power consumption with several turn-on and turn-off modes, which can be controlled by changing the thresholds. The flexible thermal range resulted in 4.715% and 6.235% cost reductions for thermostat-based and inverter-driven heat pumps, respectively. © 2025 Elsevier B.V., All rights reserved.
2025
Authors
Felipe Dantas do Carmo; Tiago Soares; Wellington Fonseca;
Publication
U Porto Journal of Engineering
Abstract
2025
Authors
Antunes, D; Soares, T; Morais, H;
Publication
2025 21ST INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET, EEM
Abstract
As energy systems evolve, protecting and empowering consumers is vital, enabling participation in decentralized electricity markets and maximizing benefits from energy resources. The integration of Distributed Energy Resources (DER) and Renewable Energy Sources (RES) fosters new energy communities, shifting from centralized systems to distributed structures. Consumers can sell excess production to neighbors, increasing income, reducing bills, and advancing energy transition goals. This paper proposes a community-based peer-to-peer (P2P) energy market model that reduces costs while respecting network constraints. Using the Alternating Direction Method of Multipliers (ADMM), ensures privacy enhancement, decentralization, and scalability. The Relaxed Branch Flow Model (RBFM) manages constraints, and Electric Vehicles (EVs) reduce imports and costs through strategic discharging. Tested on a 33-bus distribution network, the ADMM-based approach aligns closely with a centralized benchmark, showing minor discrepancies while maintaining system reliability. This model underscores the potential of decentralized markets for consumer-centric, flexible, and efficient energy trading.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.