Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Ricardo Braga

2021

Evaluation of NASA POWER Reanalysis Products to Estimate Daily Weather Variables in a Hot Summer Mediterranean Climate

Authors
Rodrigues, GC; Braga, RP;

Publication
AGRONOMY-BASEL

Abstract
This study aims to evaluate NASA POWER reanalysis products for daily surface maximum (Tmax) and minimum (Tmin) temperatures, solar radiation (Rs), relative humidity (RH) and wind speed (Ws) when compared with observed data from 14 distributed weather stations across Alentejo Region, Southern Portugal, with a hot summer Mediterranean climate. Results showed that there is good agreement between NASA POWER reanalysis and observed data for all parameters, except for wind speed, with coefficient of determination (R-2) higher than 0.82, with normalized root mean square error (NRMSE) varying, from 8 to 20%, and a normalized mean bias error (NMBE) ranging from -9 to 26%, for those variables. Based on these results, and in order to improve the accuracy of the NASA POWER dataset, two bias corrections were performed to all weather variables: one for the Alentejo Region as a whole; another, for each location individually. Results improved significantly, especially when a local bias correction is performed, with Tmax and Tmin presenting an improvement of the mean NRMSE of 6.6 degrees C (from 8.0 degrees C) and 16.1 degrees C (from 20.5 degrees C), respectively, while a mean NMBE decreased from 10.65 to 0.2%. Rs results also show a very high goodness of fit with a mean NRMSE of 11.2% and mean NMBE equal to 0.1%. Additionally, bias corrected RH data performed acceptably with an NRMSE lower than 12.1% and an NMBE below 2.1%. However, even when a bias correction is performed, Ws lacks the performance showed by the remaining weather variables, with an NRMSE never lower than 19.6%. Results show that NASA POWER can be useful for the generation of weather data sets where ground weather stations data is of missing or unavailable.

2022

Assessing the Contribution of ECa and NDVI in the Delineation of Management Zones in a Vineyard

Authors
Esteves, C; Fangueiro, D; Braga, RP; Martins, M; Botelho, M; Ribeiro, H;

Publication
AGRONOMY-BASEL

Abstract
Precision fertilization implies the need to identify the variability of soil fertility, which is costly and time-consuming. Remotely measured data can be a solution. Using this strategy, a study was conducted, in a vineyard, to delineate different management zones using two indicators: apparent soil electrical conductivity (ECa) and normalized difference vegetation index (NDVI). To understand the contribution of each indicator, three scenarios were used for zone definition: (1) using only NDVI, (2) only ECa, or (3) using a combination of the two. Then the differences in soil fertility between these zones were assessed using simple statistical methods. The results indicate that the most beneficial strategy is the combined use of the two indicators, as it allowed the definition of three distinct zones regarding important soil variables and crop nutrients, such as soil total nitrogen, Mg2+ cation, exchange acidity, and effective cation exchange capacity, and some relevant cation ratios. This strategy also allowed the identification of an ionic unbalance in the soil chemistry, due to an excess of Mg2+, that was harming crop health, as reported by NDVI. This also impacted ECa and NDVI relationship, which was negative in this study. Overall, the results demonstrate the advantages of using remotely sensed data, mainly more than one type of sensing data, and suggest a high potential for differential crop fertilization and soil management in the study area.

2022

Comparing a New Non-Invasive Vineyard Yield Estimation Approach Based on Image Analysis with Manual Sample-Based Methods

Authors
Victorino, G; Braga, RP; Santos-Victor, J; Lopes, CM;

Publication
AGRONOMY-BASEL

Abstract
Manual vineyard yield estimation approaches are easy to use and can provide relevant information at early stages of plant development. However, such methods are subject to spatial and temporal variability as they are sample-based and dependent on historical data. The present work aims at comparing the accuracy of a new non-invasive and multicultivar, image-based yield estimation approach with a manual method. Non-disturbed grapevine images were collected from six cultivars, at three vineyard plots in Portugal, at the very beginning of veraison, in a total of 213 images. A stepwise regression model was used to select the most appropriate set of variables to predict the yield. A combination of derived variables was obtained that included visible bunch area, estimated total bunch area, perimeter, visible berry number and bunch compactness. The model achieved an R-2 = 0.86 on the validation set. The image-based yield estimates outperformed manual ones on five out of six cultivar data sets, with most estimates achieving absolute errors below 10%. Higher errors were observed on vines with denser canopies. The studied approach has the potential to be fully automated and used across whole vineyards while being able to surpass most bunch occlusions by leaves.

2021

Remote Sensing (NDVI) and Apparent Soil Electrical Conductivity (ECap) to Delineate Different Zones in a Vineyard

Authors
Esteves, C; Ribeiro, H; Braga, RP; Fangueiro, D;

Publication
Biology and Life Sciences Forum

Abstract
The intensification of agriculture has greatly enhanced crop productivity, but also its potential environmental impact. Nutrient recycling and an increase in resource use efficiency are the key points to keep production at high levels with minimum impact. The present work’s goal was to provide new insight on the spatial variability of soil chemical properties in a vineyard. For this, three different zones were identified in a 6.77 ha parcel, according to the remote sensing of apparent soil electrical conductivity (ECap) and the normalized difference vegetation index (NDVI). Soil samples from specific locations were then collected and chemically described, and the resulting data were statistically analyzed. ECap and NDVI appeared to be efficient tools to define different zones within the vineyard, with most of the soil chemical properties varying at the highest significance level (p < 0.001) according to the F test, except for extractable phosphorus (Égner-Rhiem) and organic carbon (TOC method). Overall, our results revealed potential for the implementation of site-specific soil fertilization and soil quality management.

2001

Spatial validation of crop models for precision agriculture

Authors
Basso, B; Ritchie, J; Pierce, F; Braga, R; Jones, J;

Publication
Agricultural Systems

Abstract

2004

USING OPTIMIZATION TO ESTIMATE SOIL INPUTS OF CROP MODELS FOR USE IN SITE-SPECIFIC MANAGEMENT

Authors
R. P. Braga and J. W. Jones,;

Publication
Transactions of the ASAE

Abstract

  • 2
  • 3