Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by João Marques

2021

ATLANTIS - The Atlantic Testing Platform for Maritime Robotics

Authors
Pinto A.M.; Marques J.V.A.; Campos D.F.; Abreu N.; Matos A.; Jussi M.; Berglund R.; Halme J.; Tikka P.; Formiga J.; Verrecchia C.; Langiano S.; Santos C.; Sa N.; Stoker J.J.; Calderoni F.; Govindaraj S.; But A.; Gale L.; Ribas D.; Hurtos N.; Vidal E.; Ridao P.; Chieslak P.; Palomeras N.; Barberis S.; Aceto L.;

Publication
Oceans Conference Record (IEEE)

Abstract
The ATLANTIS project aims to establish a pioneer pilot infrastructure that will allow the demonstration of key enabling robotic technologies for inspection and maintenance of offshore wind farms. The pilot will be implemented in Viana do Castelo, Portugal, and will allow for testing, validation and demonstration of technologies with a range of technology readiness level, in near-real/real environments.The demonstration of robotic technologies can promote the transition from traditional inspection and maintenance methodologies towards automated robotic strategies, that remove or reduce the need of human-in-the-loop, reducing costs and improving the safety of interventions. Eight scenarios, split into four showcases, will be used to determine the required developments for robotic integration and demonstrate the applicability in the inspection and maintenance processes. The scenarios considered were identified by end-users as key areas for robotics.

2023

Shore Control Centre for Multi-Domain Heterogeneous Robotic Vehicles

Authors
Neves, FS; Campos, HJ; Campos, DF; Claro, RM; Almeida, PN; Marques, JV; Pinto, AM;

Publication
OCEANS 2023 - LIMERICK

Abstract
Given the increased interest in offshore wind energy, there is a greater need for advancements in operation and maintenance technology. As a result, robotic solutions are required to avoid human risky behavior and reduce associated operational costs. In order to accommodate the need for inspecting multiple domains, multiple robotic vehicles are utilized, which requires the deployment of control stations that can effectively monitor, facilitate communication among different vehicles, and ensure successful completion of the overall mission. A shore control centre (SCC) is a communication software infrastructure capable of monitoring, localizing and planning missions for a group of multi-domain heterogeneous robots within a local network. This paper proposes an SCC as: (i) an active monitor by continuously observing the local behaviour of each robot and the global progress of the mission and its safety; (ii) a mission planner that provides and supervises its execution while constantly checking for critical failures and intervening in the case of unexpected events. Also, The control centre is able to connect to multiple vehicles from various domains and monitor real-time data. Accordingly, validation procedures were carried out in real conditions.