2007
Authors
Moreira, PMGP; Frazao, O; Tavares, SMO; de Figueiredo, MAV; Restivo, MT; Santos, JL; de Castro, PMST;
Publication
MEASUREMENT SCIENCE & TECHNOLOGY
Abstract
The paper presents the application of temperature acquisition systems integrating thermocouples, a thermographic camera and fibre Bragg grating (FBG) sensors in gas metal arc welding (GMAW) process, MIG ( metal inert gas) welding type. Efficient procedures to use FBG sensors and thermocouples were developed. The paper presents and compares measurements made in welded plates of aluminium alloy 6082-T6. Tests were performed in both plate surfaces and good agreement between the three techniques was found.
2007
Authors
Falate, R; Frazao, O; Rego, G; Ivanov, OV; Kalinowski, HJ; Fabris, JL; Santos, JL;
Publication
MEASUREMENT SCIENCE & TECHNOLOGY
Abstract
This work shows the changes of bending curvature sensitivity when the same long- period fibre grating has different phase shifts. From the knowledge that the coupling constant is reduced as curvature increases, we theoretically and experimentally assess the possibility that the bend sensitivity follows the grating spectrum evolution during the point- to-point fabrication technique. We also show that control of bend sensitivity can be applied to the simultaneous measurement of bend and temperature.
2006
Authors
Jorge, PAS; Mayeh, M; Benrashid, R; Caldas, P; Santos, JL; Farahi, F;
Publication
MEASUREMENT SCIENCE & TECHNOLOGY
Abstract
The use of semiconductor nano-particles as temperature probes in luminescence chemical sensing applications is addressed. Temperature changes the intensity, the peak wavelength and the spectral width of the quantum dots luminescent emission in a linear and reversible way. Results are presented that show the feasibility of implementing a self-referenced intensity-based sensor to perform temperature measurements independent of the optical power level in the sensing system. A resolution of 0.3 degrees C was achieved. In addition, it is demonstrated that self-referenced temperature measurements at multiple points could be performed using reflection or transmission based optical fibre configurations.
2004
Authors
Abe, I; Kalinowski, HJ; Frazao, O; Santos, JL; Nogueira, RN; Pinto, JL;
Publication
MEASUREMENT SCIENCE & TECHNOLOGY
Abstract
We used a pair of Bragg gratings written in high birefringence fibre optics to measure, simultaneously, longitudinal and transverse strain and temperature. The Bragg gratings are superimposed in the same position of the fibre optic, so as to behave as a punctual sensor. The sensitivity of the spectral response of the device to longitudinal strain, transverse strain and temperature are all characterized, and the results of its application as a three-parameter sensor are also presented.
2002
Authors
Heredero, RL; Martin, S; de Caleya, RF; Ribeiro, ABL; Araujo, FM; Ferreira, LA; Santos, JL; Guerrero, H;
Publication
MEASUREMENT SCIENCE & TECHNOLOGY
Abstract
We present a novel method to study the behaviour of the optical propel-ties of photopolymer materials with temperature. The photopolymer is deposited on the tip of optical fibres by dip coating to fabricate low-finesse Fabry-Perot microcavities. The signal processing technique utilized to interrogate the cavity is based on the generation of two quadrature phase-shifted interferometric signals using two Bragg fibre gratings. This technique enables the determination of the values of the thermo-optical coefficient and the linear coefficient of thermal expansion of the photopolymer. The effectiveness of the processing technique is also exploited in the study of the dependence of the temperature sensitivity on the cavity thickness.
2011
Authors
Silva, SFO; Ferreira, LA; Araujo, FM; Santos, JL; Frazao, O;
Publication
FIBER AND INTEGRATED OPTICS
Abstract
Fiber structures based on the combination of abrupt tapers and fiber Bragg gratings are studied. Two situations are exploredin one, the taper is fabricated in the fiber region with a fiber Bragg grating; in the other, the taper is first fabricated followed by the fiber Bragg grating. It is shown that the first device presents the properties of a Fabry-Perot cavity and the other of a phase-shifted Bragg grating, where the phase shift is associated to the tapered fiber region. The sensing characteristics of these structures are studied, and it is shown that the temperature sensitivities are similar but with observable different responses to strain.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.