Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Renan Tosin

2025

Metabolic mapping for precision grape maturation: Application of a tomography-like method for site-specific management

Authors
Tosin, R; Rodrigues, L; Santos Campos, M; Gonçalves, I; Barbosa, C; Santos, F; Martins, R; Cunha, M;

Publication
Smart Agricultural Technology

Abstract
This study demonstrates the application of a tomography-like (TL) method to monitor grape maturation dynamics over two growing seasons (2021–2022) in the Douro Wine Region. Using a Vis-NIR point-of-measurement sensor, which employs visible and near-infrared light to penetrate grape tissues non-destructively and provide spectral data to predict internal composition, this approach captures non-destructive measurements of key physicochemical properties, including soluble solids content (SSC), weight-to-volume ratio, chlorophyll and anthocyanin levels across internal grape tissues - skin, pulp, and seeds - over six post-veraison stages. The collected data were used to generate detailed metabolic maps of maturation, integrating topographical factors such as altitude and NDVI-based (normalised difference vegetation index) vigour assessments, which revealed significant (p < 0.05) variations in SSC, chlorophyll, and anthocyanin levels across vineyard zones. The metabolic maps generated from the TL method enable high-throughput data to reveal the impact of environmental variability on grape maturation across distinct vineyard areas. Predictive models using random forest (RF) and self-learning artificial intelligence (SL-AI) algorithms showed RF's robustness, achieving stable predictions with R² = 0.86 and MAPE = 33.83 %. To illustrate the TL method's practical value, three hypothetical decision models were developed for targeted winemaking objectives based on SSC, chlorophyll in the pulp, and anthocyanin in the skin and seeds. These models underscore the TL method's ability to support site-specific management (SSM) by providing actionable agricultural practices (e.g. harvest) into vineyard management, guiding winemakers to implement tailored interventions based on metabolic profiles rather than only cultivar characteristics. This precision viticulture (PV) approach enhances wine quality and production efficiency by aligning vineyard practices with specific wine quality goals. © 2025 The Author(s)

2024

Advanced methodologies for the diagnosis of agronomic processes based on systems biology for precision agriculture

Authors
Renan Tosin;

Publication

Abstract

2025

Digital assessment of plant diseases: A critical review and analysis of optical sensing technologies for early plant disease diagnosis

Authors
Pereira, MR; Tosin, R; dos Santos, FN; Tavares, F; Cunha, M;

Publication
Computers and Electronics in Agriculture

Abstract
The present critical literature review describes the state-of-the-art innovative proximal (ground-based) solutions for plant disease diagnosis, suitable for promoting more precise and efficient phytosanitary measures. Research and development of new sensors for this purpose are currently a challenge. Present procedures and diagnosis techniques depend on visual characteristics and symptoms to be initiated and applied, compromising an early intervention. Also, these methods were designed to confirm the presence of pathogens, which did not have the required high throughput and speed to support real-time agronomic decisions in field extensions. Proximal sensor-based systems are a reasonable tool for an efficient and economic disease assessment. This work focused on identifying the application of optical and spectroscopic sensors as a tool for disease diagnosis. Biophoton emission, fluorescence spectroscopy, laser-induced breakdown spectroscopy, multi- and hyperspectral spectroscopy (HS), nuclear magnetic resonance spectroscopy, Raman spectroscopy, RGB imaging, thermography, volatile organic compounds assessment, and X-ray fluorescence were described due to their relevant potential. Nevertheless, some techniques revealed a low technology readiness level (TRL). The main conclusions identify HS, single and multi-spatial point observation, as the most applied methods for early plant disease diagnosis studies (88%), combined with distinct feature selection (FeS), dimensionality reduction (DR), and modeling techniques. Vegetation indices (28%) and principal component analysis (19%) were the most popular FeS and DR approaches, highlighting the most relevant wavelengths contributing to disease diagnosis. In modeling, classification was the most applied technique (80%), used mainly for binary and multi-class health status identification. Regression was used in the remaining (21%) scientific works screened. The data was collected primarily in laboratory conditions (62%), and a few works were performed in field conditions (21%). Regarding the study's etiological agent responsible for causing the disease, fungi (53%) and viruses (23%) were the most analyzed group of pathogens found in the literature. Overall, proximal sensors are suitable for early plant disease diagnosis before and after symptom appearance, presenting classification accuracies mostly superior to 71% and regression coefficients superior to 61%. Nevertheless, additional research regarding the study of specific host-pathogen interactions is necessary. © 2025 Elsevier B.V.

  • 4
  • 4