2019
Authors
Guedes, P; Viana, N; Silva, J; Amaral, G; Ferreira, H; Dias, A; Almeida, JM; Martins, A; Silva, EP;
Publication
OCEANS 2019 MTS/IEEE SEATTLE
Abstract
For the context of a mobile tracking system, an underwater acoustic positioning system was developed, using three hydrophones to compute the direction of an acoustic source relative to an Autonomous Surface Vehicle (ASV). The paper presents an algorithm for the Direction of Arrival (DoA) of an acoustic source, which allows to estimate its position. Preliminary results will be shown in this paper relative to the detection and identification (ID) of the acoustic sources, as well as an analysis of the proposed algorithm. The solution allows the position estimation of an acoustic source, which can be used in tracking solutions. The system can be applied in an ASV or fixed buoys, as long as the baseline's hydrophones are at equal angular distances. The main objective is to track targets with the DoA algorithm as well to estimate their position, improving what was done in [1].
2020
Authors
Martins, A; Almeida, C; Lima, P; Viegas, D; Silva, J; Almeida, JM; Almeida, C; Ramos, S; Silva, E;
Publication
GLOBAL OCEANS 2020: SINGAPORE - U.S. GULF COAST
Abstract
This paper presents an autonomous robotic system, IRIS, designed for lost fishing gear recovery. The vehicle was developed in the context of the NetTag project. This is a European Union project funded by EASME the Executive Agency for Small and Medium Enterprises addressing marine litter, and the reduction of quantity and impact of lost fishing gears in the ocean. NetTag intends to produce new technological devices for location and recovery of fishing gear and educational material about marine litter, raise awareness of fisheries industry and other stakeholders about the urgent need to combat marine litter and increase scientific knowledge on marine litter problematic, guaranteeing the engagement of fishers to adopt better practices to reduce and prevent marine litter derived from fisheries. The design of IRIS is presented in detail, addressing the mechanical design, hardware architecture, sensor system and navigation and control. Preliminary tests in tank and in controlled sea conditions are presented and ongoing developments on the recovery system are discussed.
2019
Authors
Freire, D; Silva, J; Dias, A; Almeida, JM; Martins, A;
Publication
OCEANS 2019 - MARSEILLE
Abstract
Autonomous Surface Vehicles (ASVs), operating near ship harbors or relatively close to shorelines must be able to steer away from incoming vessels and other possible obstacles, be they dynamic or not. To do this, one must implement some type of multi-target tracking and obstacle avoidance algorithms that lets the vehicle dodge obstacles. This paper presents a radar-based multi-target tracking system developed for obstacle detection in a small unmanned surface vehicle. The system was designed for ROAZ II ASV belonging to INESC TEC/ISEP and implemented in Robot Operating System (ROS) for easier integration with the already existing software.
2024
Authors
Maravalhas-Silva, J; Silva, H; Lima, AP; Silva, E;
Publication
OCEANS 2024 - SINGAPORE
Abstract
We present a pilot study where spectral unmixing is applied to hyperspectral images captured in a controlled environment with a threefold purpose in mind: validation of our experimental setup, of the data processing pipeline, and of the usage of spectral unmixing algorithms for the aforementioned research avenue. Results from this study show that classical techniques such as VCA and FCLS can be used to distinguish between plastic and nonplastic materials, but struggle significantly to distinguish between spectrally similar plastics, even in the presence of multiple pure pixels.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.