Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CESE

2025

Extensible Data Ingestion System for Industry 4.0

Authors
Oliveira, B; Oliveira, Ó; Peixoto, T; Ribeiro, F; Pereira, C;

Publication
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Abstract
Industry 4.0 promotes a paradigm shift in the orchestration, oversight, and optimization of value chains across product and service life cycles. For instance, leveraging large-scale data from sensors and devices, coupled with Machine Learning techniques can enhance decision-making and facilitate various improvements in industrial settings, including predictive maintenance. However, ensuring data quality remains a significant challenge. Malfunctions in sensors or external factors such as electromagnetic interference have the potential to compromise data accuracy, thereby undermining confidence in related systems. Neglecting data quality not only compromises system outputs but also contributes to the proliferation of bad data, such as data duplication, inconsistencies, or inaccuracies. To consider these problems is crucial to fully explore the potential of data in Industry 4.0. This paper introduces an extensible system designed to ingest, organize, and monitor data generated by various sources, focusing on industrial settings. This system can serve as a foundation for enhancing intelligent processes and optimizing operations in smart manufacturing environments. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

2025

Transformer-Based Models for Probabilistic Time Series Forecasting with Explanatory Variables

Authors
Caetano, R; Oliveira, JM; Ramos, P;

Publication
MATHEMATICS

Abstract
Accurate demand forecasting is essential for retail operations as it directly impacts supply chain efficiency, inventory management, and financial performance. However, forecasting retail time series presents significant challenges due to their irregular patterns, hierarchical structures, and strong dependence on external factors such as promotions, pricing strategies, and socio-economic conditions. This study evaluates the effectiveness of Transformer-based architectures, specifically Vanilla Transformer, Informer, Autoformer, ETSformer, NSTransformer, and Reformer, for probabilistic time series forecasting in retail. A key focus is the integration of explanatory variables, such as calendar-related indicators, selling prices, and socio-economic factors, which play a crucial role in capturing demand fluctuations. This study assesses how incorporating these variables enhances forecast accuracy, addressing a research gap in the comprehensive evaluation of explanatory variables within multiple Transformer-based models. Empirical results, based on the M5 dataset, show that incorporating explanatory variables generally improves forecasting performance. Models leveraging these variables achieve up to 12.4% reduction in Normalized Root Mean Squared Error (NRMSE) and 2.9% improvement in Mean Absolute Scaled Error (MASE) compared to models that rely solely on past sales. Furthermore, probabilistic forecasting enhances decision making by quantifying uncertainty, providing more reliable demand predictions for risk management. These findings underscore the effectiveness of Transformer-based models in retail forecasting and emphasize the importance of integrating domain-specific explanatory variables to achieve more accurate, context-aware predictions in dynamic retail environments.

2025

Industry 4.0 Technologies Revolutionising Footwear: Paving the Path to Circularity Through Innovative Services

Authors
Monteiro, L; Simoes, AC; Baptista, AJ; Rebelo, R;

Publication
HUMAN-CENTRED TECHNOLOGY MANAGEMENT FOR A SUSTAINABLE FUTURE, VOL 2, IAMOT

Abstract
The footwear industry, a sub-sector of textile industrial sector, faces increased pressures towards higher levels of sustainability and circularity along all the value chain. Along the last decades, shoe products have become more complex products, integrating a greater number of components, materials diversity and often long supply-chains related to cost reduction and production or sourcing delocalization strategies. Full value-chain digitalization, as a cornerstone of Industry 4.0 paradigm, plays a key role for leveraging more sustainable and circular products, namely by traceability operationalization and forthcoming instruments such as Digital Product Passport. This research studied, via a state-of-art framing of the challenges followed by qualitative approach, how Industry 4.0 technologies can support the development of new services that contribute to sustainable and circular practices in footwear companies. An interview-based survey was conducted to 6 footwear companies, to map the adoption level of Industry 4.0 technologies and cross-linking to circular services business models.

2025

Preface

Authors
Simoes, A; Dalmarco, G; Rodrigues, JC; Zimmermann, R;

Publication
Springer Proceedings in Business and Economics

Abstract
[No abstract available]

2025

Preface

Authors
Simoes, A; Dalmarco, G; Rodrigues, JC; Zimmermann, R;

Publication
Springer Proceedings in Business and Economics

Abstract
[No abstract available]

2025

Unlocking the potential of digital twins to achieve sustainability in seaports: the state of practice and future outlook

Authors
Homayouni, SM; de Sousa, JP; Marques, CM;

Publication
WMU JOURNAL OF MARITIME AFFAIRS

Abstract
This paper examines the role of digital twins (DTs) in promoting sustainability within seaport operations and logistics. DTs have emerged as promising tools for enhancing seaport performance. Despite the recognized potential of DTs in seaports, there is a paucity of research on their practical implementation and impact on seaport sustainability. Through a systematic literature review, this study seeks to elucidate how DTs contribute to the sustainability of seaports and to identify future research and practical applications. We reviewed and categorized 68 conceptual and practical digital applications into ten core areas that effectively support economic, social, and environmental objectives in seaports. Furthermore, this paper proposes five preliminary potential applications for DTs where practical implementations are currently lacking. The primary findings indicate that DTs can enhance seaport sustainability by facilitating real-time monitoring and decision-making, improving safety and security, optimizing resource utilization, enhancing collaboration and communication, and supporting the development of the seaport ecosystem. Additionally, this study addresses the challenges associated with DT implementation, including high costs, conflicting stakeholder priorities, data quality and availability, and model validation. The paper concludes with a discussion of the implications for seaport managers and policymakers.

  • 3
  • 225