2018
Authors
Rybarczyk, Y; Cointe, C; Goncalves, T; Minhoto, V; Deters, JK; Villarreal, S; Gonzalo, AA; Baldeon, J; Esparza, D;
Publication
JOURNAL OF SCIENCE AND TECHNOLOGY OF THE ARTS
Abstract
This study aims to develop a telemedicine platform for self-motor rehabilitation and remote monitoring by health professionals, in order to enhance recovery in patients after hip replacement. The implementation of such a technology is justified by medical (improvement of the recovery process by the possibility to perform rehabilitation exercises more frequently), economic (reduction of the number of medical appointments and the time patients spend at the hospital), mobility (diminution of the transportation to and from the hospital) and ethics (healthcare democratization and increased empowerment of the patient) purposes. The Kinect camera is used as a Natural User Interface to capture the physical exercises performed at home by the patients. The quality of the movement is evaluated in real-time by an assessment module implemented according to a Hidden-Markov Model approach. The results show a high accuracy in the evaluation of the movements (92% of correct classification). Finally, the usability of the platform is tested through the System Usability Scale (SUS). The overall SUS score is 81 out of 100, which suggests a good usability of the Web application. Further work will focus on the development of additional functionalities and an evaluation of the impact of the platform on the recovery process.
2021
Authors
Sequeira, AF; Goncalves, T; Silva, W; Pinto, JR; Cardoso, JS;
Publication
IET BIOMETRICS
Abstract
Biometric recognition and presentation attack detection (PAD) methods strongly rely on deep learning algorithms. Though often more accurate, these models operate as complex black boxes. Interpretability tools are now being used to delve deeper into the operation of these methods, which is why this work advocates their integration in the PAD scenario. Building upon previous work, a face PAD model based on convolutional neural networks was implemented and evaluated both through traditional PAD metrics and with interpretability tools. An evaluation on the stability of the explanations obtained from testing models with attacks known and unknown in the learning step is made. To overcome the limitations of direct comparison, a suitable representation of the explanations is constructed to quantify how much two explanations differ from each other. From the point of view of interpretability, the results obtained in intra and inter class comparisons led to the conclusion that the presence of more attacks during training has a positive effect in the generalisation and robustness of the models. This is an exploratory study that confirms the urge to establish new approaches in biometrics that incorporate interpretability tools. Moreover, there is a need for methodologies to assess and compare the quality of explanations.
2021
Authors
Maia, P; Morgado, J; Goncalves, T; Albuquerque, T;
Publication
MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, PT II
Abstract
Pollutant emissions from passenger cars give rise to harmful effects on human health and the environment. Predicting traffic flow is a challenging problem, but essential to understand what factors influence car traffic and what measures should be taken to reduce carbon dioxide emissions. In this work, we developed a predictive model to forecast traffic flow in several locations in the city of Porto for 24 h later, i.e., the next day at the same time. We trained a XGBoost Regressor with multi-modal data from 2018 and 2019 obtained from traffic and weather sensors of the city of Porto and the geographic location of several points of interest. The proposed model achieved a mean absolute error, mean square error, Spearman's rank correlation coefficient, and Pearson correlation coefficient equal to 80.59, 65395, 0.9162, and 0.7816, respectively, when tested on the test set. The developed model makes it possible to analyse which areas of the city of Porto will have more traffic the next day and take measures to optimise this increasing flow of cars. One of the ideas present in the literature is to develop intelligent traffic lights that change their timers according to the expected traffic in the area. This system could help decrease the levels of carbon dioxide emitted and therefore decrease its harmful effects on the health of the population and the environment.
2022
Authors
Goncalves, T; Rio-Torto, I; Teixeira, LF; Cardoso, JS;
Publication
IEEE ACCESS
Abstract
The increasing popularity of attention mechanisms in deep learning algorithms for computer vision and natural language processing made these models attractive to other research domains. In healthcare, there is a strong need for tools that may improve the routines of the clinicians and the patients. Naturally, the use of attention-based algorithms for medical applications occurred smoothly. However, being healthcare a domain that depends on high-stake decisions, the scientific community must ponder if these high-performing algorithms fit the needs of medical applications. With this motto, this paper extensively reviews the use of attention mechanisms in machine learning methods (including Transformers) for several medical applications based on the types of tasks that may integrate several works pipelines of the medical domain. This work distinguishes itself from its predecessors by proposing a critical analysis of the claims and potentialities of attention mechanisms presented in the literature through an experimental case study on medical image classification with three different use cases. These experiments focus on the integrating process of attention mechanisms into established deep learning architectures, the analysis of their predictive power, and a visual assessment of their saliency maps generated by post-hoc explanation methods. This paper concludes with a critical analysis of the claims and potentialities presented in the literature about attention mechanisms and proposes future research lines in medical applications that may benefit from these frameworks.
2022
Authors
Neto, PC; Goncalves, T; Huber, M; Damer, N; Sequeira, AF; Cardoso, JS;
Publication
PROCEEDINGS OF THE 21ST 2022 INTERNATIONAL CONFERENCE OF THE BIOMETRICS SPECIAL INTEREST GROUP (BIOSIG 2022)
Abstract
Morphing attacks are one of the many threats that are constantly affecting deep face recognition systems. It consists of selecting two faces from different individuals and fusing them into a final image that contains the identity information of both. In this work, we propose a novel regularisation term that takes into account the existent identity information in both and promotes the creation of two orthogonal latent vectors. We evaluate our proposed method (OrthoMAD) in five different types of morphing in the FRLL dataset and evaluate the performance of our model when trained on five distinct datasets. With a small ResNet-18 as the backbone, we achieve state-of-the-art results in the majority of the experiments, and competitive results in the others.
2022
Authors
Huber, M; Boutros, F; Luu, AT; Raja, K; Ramachandra, R; Damer, N; Neto, PC; Goncalves, T; Sequeira, AF; Cardoso, JS; Tremoco, J; Lourenco, M; Serra, S; Cermeno, E; Ivanovska, M; Batagelj, B; Kronovsek, A; Peer, P; Struc, V;
Publication
2022 IEEE INTERNATIONAL JOINT CONFERENCE ON BIOMETRICS (IJCB)
Abstract
This paper presents a summary of the Competition on Face Morphing Attack Detection Based on Privacy-aware Synthetic Training Data (SYN-MAD) held at the 2022 International Joint Conference on Biometrics (IJCB 2022). The competition attracted a total of 12 participating teams, both from academia and industry and present in 11 different countries. In the end, seven valid submissions were submitted by the participating teams and evaluated by the organizers. The competition was held to present and attract solutions that deal with detecting face morphing attacks while protecting people's privacy for ethical and legal reasons. To ensure this, the training data was limited to synthetic data provided by the organizers. The submitted solutions presented innovations that led to outperforming the considered baseline in many experimental settings. The evaluation benchmark is now available at: https://github.com/marcohuber/SYN-MAD-2022.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.