Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Luís Filipe Pádua

2017

UAS, sensors, and data processing in agroforestry: a review towards practical applications

Authors
Pádua, L; Vanko, J; Hruska, J; Adao, T; Sousa, JJ; Peres, E; Morais, R;

Publication
INTERNATIONAL JOURNAL OF REMOTE SENSING

Abstract
The aim of this study is twofold: first, to present a survey of the actual and most advanced methods related to the use of unmanned aerial systems (UASs) that emerged in the past few years due to the technological advancements that allowed the miniaturization of components, leading to the availability of small-sized unmanned aerial vehicles (UAVs) equipped with Global Navigation Satellite Systems (GNSS) and high quality and cost-effective sensors; second, to advice the target audience - mostly farmers and foresters - how to choose the appropriate UAV and imaging sensor, as well as suitable approaches to get the expected and needed results of using technological tools to extract valuable information about agroforestry systems and its dynamics, according to their parcels' size and crop's types. Following this goal, this work goes beyond a survey regarding UAS and their applications, already made by several authors. It also provides recommendations on how to choose both the best sensor and UAV, in according with the required application. Moreover, it presents what can be done with the acquired sensors' data through theuse of methods, procedures, algorithms and arithmetic operations. Finally, some recent applications in the agroforestry research area are presented, regarding the main goal of each analysed studies, the used UAV, sensors, and the data processing stage to reach conclusions.

2017

Bringing together UAS-based land surveying and procedural modelling of buildings to set up enhanced VR environments for cultural heritage

Authors
Adao, T; Padua, L; Hruska, J; Peres, E; Sousa, JJ; Morais, R; Magalhaes, LG;

Publication
2017 24 ENCONTRO PORTUGUES DE COMPUTACAO GRAFICA E INTERACAO (EPCGI)

Abstract
A methodology to rapidly produce environments that combine the intuition of in situ augmented reality (AR) with the commodity of virtual reality (VR) is proposed in this paper, by bringing together unmanned aerial systems (UAS) imagery and procedural modelling. While fully synthesized environments provide a very accurate visualization of the conserved parts of the real-world, missing parts - namely ruins - can be complemented with procedurally modelled structures. Regarding methodology's steps, firstly, a UAS flight mission gathers georeferenced imagery data about the site of interest. Then, the image set is converted to an accurate 3D model of the referred site, through photogrammetry. By considering the geographic information that also results from the previous process, ruins are manually outlined for georeferencing purposes. To complement ruins' missing information, virtual models of buildings are produced too, in a procedural modelling tool. Finally, at the full VR environment setup step, all elements are imported and subjected to geometric transformations that aim to match the procedurally modelled buildings with the outlined ruins. To improve the insight about the process work-flow, system's architecture and implementation are presented along with a case-study regarding a historically relevant site - Vila Velha's city gates (Vila Real, Portugal) - and preliminary results.

2014

Evaluation of MS Kinect for elderly meal intake monitoring

Authors
Cunha, A; Padua, L; Costa, L; Trigueiros, P;

Publication
CENTERIS 2014 - CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS / PROJMAN 2014 - INTERNATIONAL CONFERENCE ON PROJECT MANAGEMENT / HCIST 2014 - INTERNATIONAL CONFERENCE ON HEALTH AND SOCIAL CARE INFORMATION SYSTEMS AND TECHNOLOGIES

Abstract
Any form of eating disorder is detrimental for health. Having an eating disorder increases the risks for chronic diseases and general morbidity, leading to several health problems such as obesity, hypertension and cardio-vascular diseases. The risk is greater for elderly people, as ageing submits the body to several functional changes that affect health and nutrition conditions. Automatic monitoring systems can help to prevent these risks by supporting people to maintain appropriate eating behaviours. Ageing services based on ICT assistive services are increasing as a result of the awareness of the growing socio-economic relevance of this issue, especially when we consider the rural and very sparsely-populated areas. In order to assess these requirements, systems should be automatic, non-intrusive and low cost. This paper presents an evaluation test of the Microsoft Kinect sensor for monitoring older people's meal intake, with the aim of contributing to the development of an automatic diet monitoring system. (C) 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

2018

Machine learning classification methods in hyperspectral data processing for agricultural applications

Authors
Hruska, J; Adão, T; Pádua, L; Marques, P; Cunha, A; Peres, E; Sousa, AMR; Morais, R; Sousa, JJ;

Publication
Proceedings of the International Conference on Geoinformatics and Data Analysis, ICGDA 2018, Prague, Czech Republic, April 20-22, 2018

Abstract
In agricultural applications hyperspectral imaging is used in cases where differences in spectral reflectance of the examined objects are small. However, the large amount of data generated by hyperspectral sensors requires advance processing methods. Machine learning approaches may play an important role in this task. They are known for decades, but they need high volume of data to compute accurate results. Until recently, the availability of hyperspectral data was a big drawback. It was first used in satellites, later in manned aircrafts and data availability from those platforms was limited because of logistics complexity and high price. Nowadays, hyperspectral sensors are available for unmanned aerial vehicles, which enabled to reach a high volume of data, thus overcoming these issues. This way, the aim of this paper is to present the status of the usage of machine learning approaches in the hyperspectral data processing, with a focus on agriculture applications. Nevertheless, there are not many studies available applying machine learning approach to hyperspectral data for agricultural applications. This apparent limitation was in fact the inspiration for making this survey. Preliminary results using UAV-based data are presented, showing the suitability of machine learning techniques in remote sensed data. © 2018 Association for Computing Machinery.

2018

A pilot digital image processing approach for detecting vineyard parcels in Douro region through high-resolution aerial imagery

Authors
Adáo, T; Pádua, L; Hruška, J; Marques, P; Peres, E; Sousa, JJ; Cunha, A; Sousa, AMR; Morais, R;

Publication
Proceedings of the International Conference on Geoinformatics and Data Analysis, ICGDA 2018, Prague, Czech Republic, April 20-22, 2018

Abstract
Vineyard parcels delimitation is a preliminary but important task to support zoning activities, which can be burdensome and time-consuming when manually performed. In spite of being desirable to overcome such issue, the implementation of a semi-/fully automatic delimitation approach can meet serious development challenges when dealing with vineyards like the ones that prevail in Douro Region (north-east of Portugal), mainly due to the great diversity of parcel/row formats and several factors that can hamper detection as, for example, interrupted rows and inter-row vegetation. Thereby, with the aim of addressing vineyard parcels detection and delimitation in Douro Region, a preliminary method based on segmentation and morphological operations upon high-resolution aerial imagery is proposed. This method was tested in a data set collected from vineyards located at the University of Trás-os-Montes and Alto Douro(Vila Real, Portugal). The presence of some of the previously mentioned challenging conditions - namely interrupted rows and inter-row grassing - in a few parcels contributed to lower the overall detection accuracy, pointing out the need for future improvements. Notwithstanding, encouraging preliminary results were achieved. © 2018 Association for Computing Machinery.

2018

Towards modern cost-effective and lightweight Augmented Reality setups

Authors
Pádua, L; Adão, T; Narciso, D; Cunha, A; Magalhães, L; Peres, E;

Publication
Virtual and Augmented Reality: Concepts, Methodologies, Tools, and Applications

Abstract
Augmented Reality (AR) has been widely used in areas such as medicine, education, entertainment and cultural heritage to enhance activities that include (but are not limited to) teaching, training and amusement, through the completion of the real world with viewable and usually interactive virtual data (e.g. 3D models, geo-markers and labels). Despite the already confirmed AR benefits in the referred areas, many of the existing AR systems rely on heavy and obsolete hardware bundles composed of several devices and numerous cables that usually culminate in considerably expensive solutions. This issue is about to be tackled through the recent technological developments which currently enable the production of small-sized boards with remarkable capabilities - such as processing, visualization and storage - at relatively low prices. Following this line of reasoning, this paper proposes and compares five different multi-purpose AR mobile units, running Windows or Android operating systems, having in mind low-cost and lightweight requirements and different levels of immersion: a laptop computer, two tablets, a smartphone and smartglasses. A set of tests was carried out to evaluate the proposed unit performance. Moreover, a set of users' assessments was also conducted, highlighting an overall acceptance regarding the use of the proposed units in AR applications. This paper is an extension of a previous work (Pádua et al., 2015) in which a conceptual architecture for mobile units - complying with AR requirements (including visualization, processing, location and communication) for indoor or outdoor utilization - was presented, along with a shorter set of lightweight and cost-effective AR mobile units and respective performance tests. © 2018, IGI Global.

  • 2
  • 10