2020
Authors
Javadi, M; Nezhad, AE; Firouzi, K; Besanjideh, F; Gough, M; Lotfi, M; Anvari Moghadam, A; Catalao, JPS;
Publication
2020 20TH IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2020 4TH IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC/I&CPS EUROPE)
Abstract
This paper presents the optimal operation strategy for home energy management system (HEMS) in the presence of the inverter-based heating, ventilation and air conditioning (HVAC) system. The main target of this paper is to find the optimal scheduling of the home appliances in line with the optimal operation of the air conditioner system to reduce the daily bills while the end-users discomfort index would be minimized. In this paper, the mathematical formulation is represented in mixed-integer linear programming (MILP) framework to reduce the computational burden and easily be adapted by hardware for implementation. The HEMS is the main responsible for optimal scheduling of controllable and interruptible loads as well as serving the fixed loads. The electricity tariff is based on time-of-use (TOU) mechanism and three different tariffs have been considered during the daily consumptions. The simulation results for the daily operation of a residential home confirms that the proposed model can effectively reduce the electricity bill while the consumer predefined comfort level is appropriately maintained.
2020
Authors
Javadi, MS; Gough, M; Lotfi, M; Nezhad, AE; Santos, SF; Catalao, JPS;
Publication
ENERGY
Abstract
Today, the fact that consumers are becoming more active in electrical power systems, along with the development in electronic and control devices, makes the design of Home Energy Management Systems (HEMSs) an expedient approach to mitigate their costs. The added costs incurred by consumers are mainly paying for the peak-load demand and the system's operation and maintenance. Thus, developing and utilizing an efficient HEMS would provide an opportunity both to the end-users and system operators to reduce their costs. Accordingly, this paper proposes an effective HEMS design for the self-scheduling of assets of a residential end-user. The suggested model considers the existence of a dynamic pricing scheme such as Real-Time Pricing (RTP), Time-of-Use (TOU), and Inclining Block Rate (IBR), which are effective Demand Response Programs (DRPs) put in place to alleviate the energy bill of consumers and incentivize demand-side participation in power systems. In this respect, the self-scheduling problem is modeled using a stochastic Mixed-Integer Linear Programming (MILP) framework, which allows optimal determination of the status of the home appliances throughout the day, obtaining the global optimal solution with a fast convergence rate. It is noted that the consumer is equipped with self-generation assets through a Photovoltaic (PV) panel and a battery. This system would make the consumers have energy arbitrage and transact energy with the utility grid. Consequently, the proposed model is demonstrated by determining the best operation schedule for different case studies, highlighting the impact each different DRP has on designing and utilizing the HEMS system for best results.
2020
Authors
Vahid Ghavidel, M; Javadi, MS; Gough, M; Santos, SF; Shafie khah, M; Catalao, JPS;
Publication
ENERGIES
Abstract
A key challenge for future energy systems is how to minimize the effects of employing demand response (DR) programs on the consumer. There exists a diverse range of consumers with a variety of types of loads, such as must-run loads, and this can reduce the impact of consumer participation in DR programs. Multi-energy systems (MES) can solve this issue and have the capability to reduce any discomfort faced by all types of consumers who are willing to participate in the DRPs. In this paper, the most recent implementations of DR frameworks in the MESs are comprehensively reviewed. The DR modelling approach in such energy systems is investigated and the main contributions of each of these works are included. Notably, the amount of research in MES has rapidly increased in recent years. The majority of the reviewed works consider power, heat and gas systems within the MES. Over three-quarters of the papers investigated consider some form of energy storage system, which shows how important having efficient, cost-effective and reliable energy storage systems will be in the future. In addition, a vast majority of the works also considered some form of demand response programs in their model. This points to the need to make participating in the energy market easier for consumers, as well as the importance of good communication between generators, system operators, and consumers. Moreover, the emerging topics within the area of MES are investigated using a bibliometric analysis to provide insight to other researchers in this area.
2020
Authors
Javadi, M; Lotfi, M; Osorio, GJ; Ashraf, A; Nezhad, AE; Gough, M; Catalao, JPS;
Publication
2020 IEEE 14TH INTERNATIONAL CONFERENCE ON COMPATIBILITY, POWER ELECTRONICS AND POWER ENGINEERING (CPE-POWERENG), VOL 1
Abstract
Self-scheduling of Home Energy Management Systems (HEMS) is one of the most interesting problems for active end-users to reduce their electricity bills. The electricity bill reduction by adopting Demand Response Programs (DRP) considering the flexibility of the end-users is addressed in this paper. The problem is addressed as a multi-objective optimization problem. The first objective function is the minimization of the daily bill, while the second objective aims to minimize the Discomfort Index (DI) regarding shifting the home appliances plugging-in time. The Time-of-Use (ToU) tariff is adopted in this paper and therefore, the end-users can benefit from shifting their flexible loads from peak hours to the off-peak hours and this reduces their bills, accordingly. In this case, the end-users have to change their energy consumption which imposes a level of discomfort on the end-users. Therefore, a two-stage model is proposed in this paper to deal with the mentioned objective functions. The proposed model is represented as standard mixed-integer linear programming (MILP) and for solving this problem the epsilon-constraint method is adopted in this study. The obtained Pareto front from the epsilon-constraint multi-objective framework is fed to the fuzzy satisfying method for final plan selection. These results show that by providing the Pareto set of optimal solutions to the user, they are more informed and can make decisions that better suit their preferences.
2020
Authors
Vahid Ghavidel, M; Javadi, MS; Santos, SF; Gough, M; Shafie khah, M; Catalao, JPS;
Publication
2020 INTERNATIONAL CONFERENCE ON SMART ENERGY SYSTEMS AND TECHNOLOGIES (SEST)
Abstract
Nowadays demand response (DR) is known as one of the main parts of the power system especially in the smart grid infrastructure. Furthermore, to enhance the participation of the consumers in the DR programs, the Independent System Operators (ISOs) have introduced a new entity, i.e. Demand Response Aggregator (DRA). The main contribution of this paper is to investigate a novel framework to increase the profits of the DRA participating in the day-ahead electricity market, i.e. employment of an axillary generation system in the DRA entity. It is supposed that the DRA in this paper has an axillary generation system and it would lead to an increase in the profit of the DRA through avoiding the economic loss in the process of trading DR obtained by the active participation of prosumers in the electricity market. The fuel cell is introduced as the axillary generation unit to the DRA unit. In the framework proposed in this paper, the DR is acquired from end-users during peak periods and will be offered to the day-ahead electricity market. The power flow during the off-peak hours is in another direction, i.e. from the grid to the consumers. In this model, the information-gap decision theory (IGDT) is chosen as the risk measure. The uncertain parameter is the day-ahead electricity market price. The optimization problem's objective is to maximize the profit of the DRA. The behavior of the risk-seeker decision-maker is analyzed and investigated. The feasibility of the program is demonstrated by applying it to realistic data.
2021
Authors
Javadi, MS; Nezhad, AE; Nardelli, PHJ; Gough, M; Lotfi, M; Santos, S; Catalao, JPS;
Publication
SUSTAINABLE CITIES AND SOCIETY
Abstract
This paper presents a self-scheduling model for home energy management systems (HEMS) in which a novel formulation of a linear discomfort index (DI) is proposed, incorporating the preferences of end-users in the daily operation of home appliances. The HEMS self-scheduling problem is modelled as a mixed-integer linear programming (MILP) multi-objective problem, aimed at minimizing the energy bill and DI. In this framework, the proposed DI determines the optimal time slots for the operation of home appliances while minimizing end-users? bills. The resulting multi-objective optimization problem has then been solved by using the epsilon-constraint technique and the VIKOR decision maker has been employed to select the most desired Pareto solution. The proposed model is tested considering tariffs in the presence of various price-based demand response programs (DRP), namely time-of-use (TOU) and real-time pricing (RTP). In addition, different scenarios considering the presence of electrical energy storage (EES) are investigated to study their impact on the optimal operation of HEMS. The simulation results show that the self-scheduling approach proposed in this paper yields significant reductions in the electricity bills for different electricity tariffs.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.