Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CRIIS

2023

Deep Learning Models for the Classification of Crops in Aerial Imagery: A Review

Authors
Teixeira, I; Morais, R; Sousa, JJ; Cunha, A;

Publication
AGRICULTURE-BASEL

Abstract
In recent years, the use of remote sensing data obtained from satellite or unmanned aerial vehicle (UAV) imagery has grown in popularity for crop classification tasks such as yield prediction, soil classification or crop mapping. The ready availability of information, with improved temporal, radiometric, and spatial resolution, has resulted in the accumulation of vast amounts of data. Meeting the demands of analysing this data requires innovative solutions, and artificial intelligence techniques offer the necessary support. This systematic review aims to evaluate the effectiveness of deep learning techniques for crop classification using remote sensing data from aerial imagery. The reviewed papers focus on a variety of deep learning architectures, including convolutional neural networks (CNNs), long short-term memory networks, transformers, and hybrid CNN-recurrent neural network models, and incorporate techniques such as data augmentation, transfer learning, and multimodal fusion to improve model performance. The review analyses the use of these techniques to boost crop classification accuracy by developing new deep learning architectures or by combining various types of remote sensing data. Additionally, it assesses the impact of factors like spatial and spectral resolution, image annotation, and sample quality on crop classification. Ensembling models or integrating multiple data sources tends to enhance the classification accuracy of deep learning models. Satellite imagery is the most commonly used data source due to its accessibility and typically free availability. The study highlights the requirement for large amounts of training data and the incorporation of non-crop classes to enhance accuracy and provide valuable insights into the current state of deep learning models and datasets for crop classification tasks.

2023

Segmentation as a Pre-processing for Automatic Grape Moths Detection

Authors
Teixeira, AC; Carneiro, GA; Morais, R; Sousa, JJ; Cunha, A;

Publication
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2023, PT II

Abstract
Grape moths are a significant pest in vineyards, causing damage and losses in wine production. Pheromone traps are used to monitor grape moth populations and determine their developmental status to make informed decisions regarding pest control. Smart pest monitoring systems that employ sensors, cameras, and artificial intelligence algorithms are becoming increasingly popular due to their ability to streamline the monitoring process. In this study, we investigate the effectiveness of using segmentation as a pre-processing step to improve the detection of grape moths in trap images using deep learning models. We train two segmentation models, the U-Net architecture with ResNet18 and InceptionV3 backbonesl, and utilize the segmented and non-segmented images in the YOLOv5s and YOLOv8s detectors to evaluate the impact of segmentation on detection. Our results show that segmentation preprocessing can significantly improve detection by 3% for YOLOv5 and 1.2% for YOLOv8. These findings highlight the potential of segmentation pre-processing for enhancing insect detection in smart pest monitoring systems, paving the way for further exploration of different training methods.

2023

Can the Segmentation Improve the Grape Varieties' Identification Through Images Acquired On-Field?

Authors
Carneiro, GA; Texeira, A; Morais, R; Sousa, JJ; Cunha, A;

Publication
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2023, PT II

Abstract
Grape varieties play an important role in wine's production chain, its identification is crucial for controlling and regulating the production. Nowadays, two techniques are widely used, ampelography and molecular analysis. However, there are problems with both of them. In this scenario, Deep Learning classifiers emerged as a tool to automatically classify grape varieties. A problem with the classification of on-field acquired images is that there is a lot of information unrelated to the target classification. In this study, the use of segmentation before classification to remove such unrelated information was analyzed. We used two grape varieties identification datasets to fine-tune a pre-trained EfficientNetV2S. Our results showed that segmentation can slightly improve classification performance if only unrelated information is removed.

2023

Antimicrobial Effects and Antioxidant Activity of Myrtus communis L. Essential Oil in Beef Stored under Different Packaging Conditions

Authors
Moura, D; Vilela, J; Saraiva, S; Monteiro-Silva, F; De Almeida, JMMM; Saraiva, C;

Publication
FOODS

Abstract
The aim of this study was to assess the antimicrobial effects of myrtle (Myrtus communis L.) essential oil (EO) on pathogenic (E. coli O157:H7 NCTC 12900; Listeria monocytogenes ATCC BAA-679) and spoilage microbiota in beef and determine its minimum inhibitory concentration (MIC) and antioxidant activity. The behavior of LAB, Enterobacteriaceae, Pseudomonas spp., and fungi, as well as total mesophilic (TM) and total psychotropic (TP) counts, in beef samples, was analyzed during storage at 2 and 8 C-degrees in two different packaging systems (aerobiosis and vacuum). Leaves of myrtle were dried, its EO was extracted by hydrodistillation using a Clevenger-type apparatus, and the chemical composition was determined using chromatographical techniques. The major compounds obtained were myrtenyl acetate (15.5%), beta-linalool (12.3%), 1,8-cineole (eucalyptol; 9.9%), geranyl acetate (7.4%), limonene (6.2%), alpha-pinene (4.4%), linalyl o-aminobenzoate (5.8%), alpha-terpineol (2.7%), and myrtenol (1.2%). Myrtle EO presented a MIC of 25 mu L/mL for E. coli O157:H7 NCTC 12900, E. coli, Listeria monocytogenes ATCC BAA-679, Enterobacteriaceae, and E. coli O157:H7 ATCC 35150 and 50 mu L/mL for Pseudomonas spp. The samples packed in aerobiosis had higher counts of deteriorative microorganisms than samples packed under vacuum, and samples with myrtle EO presented the lowest microbial contents, indicating good antimicrobial activity in beef samples. Myrtle EO is a viable natural alternative to eliminate or reduce the pathogenic and deteriorative microorganisms of meat, preventing their growth and enhancing meat safety.

2023

LIBS-Based Analysis of Elemental Composition in Skin, Pulp, and Seeds of White and Red Grape Cultivars

Authors
Tosin, R; Monteiro Silva, F; Martins, R; Cunha, M;

Publication
CSAC 2023

Abstract

2023

Precision maturation assessment of grape tissues: Hyperspectral bi-directional reconstruction using tomography-like based on multi-block hierarchical principal component analysis

Authors
Tosin, R; Monteiro-Silva, F; Martins, R; Cunha, M;

Publication
BIOSYSTEMS ENGINEERING

Abstract
This paper introduces a tomography-like method for assessing grape maturation. It analyses inner tissue spectra through point-of-measurement (POM) sensing. A multi-block hierarchical principal component analysis (MHPCA) algorithm was used for the spectral reconstruction of total grapes (skin, pulp, and seed). Two grape cultivars, Loureiro (white; n = 216) and Vinhao (red; n = 205) were measured at 12 dates after veraison (DAV). The reconstructed spectra showed no significant differences (p < 0.001) from the originals for both grapes. Loureiro had better statistical metrics (Person's correlation coefficient (r) values for: total grape: 0.99, skin: 1; pulp: 1, seed: 0.94) than Vinhao (r values for: total grape: 0.92, skin: 0.92; pulp: 0.95, seed: 0.95). Using self learning artificial intelligence (SL-AI), the following parameters were predicted for both grapes: soluble solids content (%; MAPE <13%), puncture force (N; MAPE <29%), chlorophyll content (a.u.; MAPE <29%), and anthocyanin content (a.u.; MAPE <17%, Vinhao only). When comparing observed values with predicted skin, pulp, and seed spectra, Vinhao showed no statistical differences for most parameters, except pulp chlorophyll on one DAV in the final maturation stage. The same was done with the Loureiro cultivar. Although Loureiro mostly showed no statistical differences in assessed parameters across tissues and dates, variations were found in pulp and skin chlorophyll content and puncture force. This tomography-like approach based on tissue maturation can help viticulturists to access instant data on grape maturation, supporting informed decision-making and promoting more sustainable agricultural practices.

  • 69
  • 377