Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CRIIS

2023

Robotics in Natural Settings - CLAWAR 2022, Ponta Delgada, Portugal, 12-14 September, 2022

Authors
Cascalho, JM; Tokhi, MO; Silva, MF; Mendes, AB; Goher, KM; Funk, M;

Publication
CLAWAR

Abstract

2023

Development of a Collaborative Robotic Platform for Autonomous Auscultation

Authors
Lopes, D; Coelho, L; Silva, MF;

Publication
APPLIED SCIENCES-BASEL

Abstract
Listening to internal body sounds, or auscultation, is one of the most popular diagnostic techniques in medicine. In addition to being simple, non-invasive, and low-cost, the information it offers, in real time, is essential for clinical decision-making. This process, usually done by a doctor in the presence of the patient, currently presents three challenges: procedure duration, participants' safety, and the patient's privacy. In this article we tackle these by proposing a new autonomous robotic auscultation system. With the patient prepared for the examination, a 3D computer vision sub-system is able to identify the auscultation points and translate them into spatial coordinates. The robotic arm is then responsible for taking the stethoscope surface into contact with the patient's skin surface at the various auscultation points. The proposed solution was evaluated to perform a simulated pulmonary auscultation in six patients (with distinct height, weight, and skin color). The obtained results showed that the vision subsystem was able to correctly identify 100% of the auscultation points, with uncontrolled lighting conditions, and the positioning subsystem was able to accurately position the gripper on the corresponding positions on the human body. Patients reported no discomfort during auscultation using the described automated procedure.

2023

Insect Farming – An EPS@ISEP 2022 Project

Authors
Copinet, B; Flügge, F; Margetich, LC; Vandepitte, M; Petrache, PL; Duarte, AJ; Malheiro, B; Ribeiro, C; Justo, J; Silva, MF; Ferreira, P; Guedes, P;

Publication
Lecture Notes in Educational Technology

Abstract
Intensive cattle farming as a means of protein production contributes with the direct emission of greenhouse gases and the indirect contamination of soil and water. The public awareness towards this issue is growing in western cultures, leading to the stagnation of meat consumption and to the willingness to adopt alternative sustainable sources of protein. A solution is to farm insects as they present a reduced environmental impact and constitute a well-known source of protein. However, for westerners, eating insects implies a cultural change as they are still seen as dirty and disgusting. In 2022, a team of five EPS@ISEP students chose to design a solution for this problem followed by the assembly and test of the corresponding proof-of-concept prototype. They decided to design a home farming kit to grow mealworms driven by ethical, sustainable and the market needs. Exploring the insect life-cycle, the kit provides protein for humans and animals, chitin for soil bacteria and frass for plants. It can also be used as an educational tool for children to learn about sustainability, social responsibility and insect life-cycles, helping to overtake the cultural barrier against insect eating from a young age. © 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

2023

Urban Exploration Game – An EPS@ISEP 2022 Project

Authors
Blaschke, L; Blauw, B; Herlange, C; Pyciak, A; Zschocke, J; Duarte, AJ; Malheiro, B; Ribeiro, C; Justo, J; Silva, MF; Ferreira, P; Guedes, P;

Publication
Lecture Notes in Educational Technology

Abstract
Tourists nowadays tend to avoid tourist traps and are looking for engaging ways to explore cities in the limited time they have. Standard options to explore cities seldom offer a combination between efficiency and fun. Furthermore, a search for an exploration city app returns an unlimited supply of lookalike websites and apps, all claiming to be the best. This paper reports the development of QRioCity, an efficient and exciting way to explore cities, by the “Dragonics” student team. QRioCity offers users the option to sign up for a playful tour through the city of Porto using a public kiosk with an interactive touchscreen. There is no limit to the number of teams playing simultaneously nor there is need to provide personal data. The teams are led through the city using clues and are proposed assignments, like scanning QR codes, to earn points. At the end of the game, every team receives discount coupons for local shops or stores depending on their score, even when they play alone. This way QRioCity helps tourists enjoying the local city life while offering municipalities a chance to strengthen their local economy. © 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

2023

ROBOT2022: Fifth Iberian Robotics Conference

Authors
Tardioli, D; Matellán, V; Heredia, G; Silva, MF; Marques, L;

Publication
Lecture Notes in Networks and Systems

Abstract

2023

ROBOT2022: Fifth Iberian Robotics Conference

Authors
Tardioli, D; Matellán, V; Heredia, G; Silva, MF; Marques, L;

Publication
Lecture Notes in Networks and Systems

Abstract

  • 57
  • 369