2025
Authors
Grazi, L; Feijoo Alonso, A; Gasiorek, A; Pertusa Llopis, AM; Grajeda, A; Kanakis, A; Rodriguez Vidal, A; Parri, A; Vidal, F; Ergas, I; Zeljkovic, I; Durá, JP; Mein, JP; Katsampiris Salgado, K; Rocha, F; Rodriguez, LN; Petry, R; Neufeld, M; Dimitropoulos, N; Köster, N; Mimica, R; Fernandes, SV; Crea, S; Makris, S; Giartzas, S; Settler, V; Masood, J;
Publication
Electronics (Switzerland)
Abstract
Small to medium-sized shipyards play a crucial role in the European naval industry. However, the globalization of technology has increased competition, posing significant challenges to shipyards, particularly in domestic markets for short sea, work, and inland vessels. Many shipyard operations still rely on manual, labor-intensive tasks performed by highly skilled operators. In response, the adoption of new tools is essential to enhance efficiency and competitiveness. This paper presents a methodology for developing a human-centric portfolio of advanced technologies tailored for shipyard environments, covering processes such as shipbuilding, retrofitting, outfitting, and maintenance. The proposed technological solutions, which have achieved high technology readiness levels, include 3D modeling and digitalization, robotics, augmented and virtual reality, and occupational exoskeletons. Key findings from real-scale demonstrations are discussed, along with major development and implementation challenges. Finally, best practices and recommendations are provided to support both technology developers seeking fully tested tools and end users aiming for seamless adoption. © 2025 by the authors.
2025
Authors
Martins, G; Nutonen, K; Costa, P; Kuts, V; Otto, T; Sousa, A; Petry, R;
Publication
IEEE International Conference on Autonomous Robot Systems and Competitions, ICARSC
Abstract
Digital twins enable real-time modeling, simulation, and monitoring of complex systems, driving advancements in automation, robotics, and industrial applications. This study presents a large-scale digital twin-testing facility for evaluating mobile robots and pilot robotic systems in a research laboratory environment. The platform integrates high-fidelity physical and environmental models, providing a controlled yet dynamic setting for analyzing robotic behavior. A key feature of the system is its comprehensive data collection framework, capturing critical parameters such as position, orientation, and velocity, which can be leveraged for machine learning, performance optimization, and decision-making. The facility also supports the simulation of discrete operational systems, using predictive modeling to bridge informational gaps when real-time data updates are unavailable. The digital twin was validated through a matrix manufacturing system simulation, with an Augmented Reality (AR) interface on the HoloLens 2 to overlay digital information onto mobile platform controllers, enhancing situational awareness. The main contributions include a digital twin framework for deploying data-driven robotic systems and three key AR/VR integration optimization methods. Demonstrated in a laboratory setting, the system is a versatile tool for research and industrial applications, fostering insights into robotic automation and digital twin scalability while reducing costs and risks associated with real-world testing. © 2025 IEEE.
2025
Authors
Couto, B; Petry, R; Mendes, A; Silva, F;
Publication
IEEE International Conference on Autonomous Robot Systems and Competitions, ICARSC
Abstract
The growing reliance on e-commerce and the demand for efficient intralogistics operations have increased the need for automation, while labour shortages continue to pose significant challenges. When combined with the inherent risks of forklift operation, this circumstance prompted businesses to look for robotic solutions for intralogistics tasks. However, robots are still limited when they come across situations that are outside of their programming scope and often need assistance from humans. To achieve the long-term goal of enhancing intralogistics operation, we propose the development of a virtual reality-based teleoperation system that allows remote operation of robot forklifts with minimal latency. Considering the specificities of the teleoperation process and network dynamics, we conduct detailed modelling to analyse latency factors, optimise system performance, and ensure a seamless user experience. Experimental results on a mobile robot have shown that the proposed teleoperation system achieves an average glass-to-glass latency of 368 ms, with capturing latency contributing to approximately 60% of the total delay. The results also indicate that network os-cillations significantly impact image quality and user experience, emphasising the importance of a stable network infrastructure. © 2025 IEEE.
2025
Authors
Nascimento, R; Rocha, CD; Gonzalez, DG; Silva, T; Moreira, R; Silva, MF; Filipe, V; Rocha, LF;
Publication
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
Abstract
The growing demand for high-quality components in various industries, particularly in the automotive sector, requires advanced and reliable inspection methods to maintain competitive standards and support innovation. Manual quality inspection tasks are often inefficient and prone to errors due to their repetitive nature and subjectivity, which can lead to attention lapses and operator fatigue. The inspection of reflective aluminum parts presents additional challenges, as uncontrolled reflections and glare can obscure defects and reduce the reliability of conventional vision-based methods. Addressing these challenges requires optimized illumination strategies and robust image processing techniques to enhance defect visibility. This work presents the development of an automated optical inspection system for reflective parts, focusing on components made of high-pressure diecast aluminum used in the automotive industry. The reflective nature of these parts introduces challenges for defect detection, requiring optimized illumination and imaging methods. The system applies deep learning algorithms and uses dome light to achieve uniform illumination, enabling the detection of small defects on reflective surfaces. A collaborative robotic manipulator equipped with a gripper handles the parts during inspection, ensuring precise positioning and repeatability, which improves both the efficiency and effectiveness of the inspection process. A flow execution-based software platform integrates all system components, enabling seamless operation. The system was evaluated with Schmidt Light Metal Group using three custom datasets to detect surface porosities and inner wall defects post-machining. For surface porosity detection, YOLOv8-Mosaic, trained with cropped images to reduce background noise, achieved a recall value of 84.71% and was selected for implementation. Additionally, an endoscopic camera was used in a preliminary study to detect defects within the inner walls of holes. The industrial trials produced promising results, demonstrating the feasibility of implementing a vision-based automated inspection system in various industries. The system improves inspection accuracy and efficiency while reducing material waste and operator fatigue.
2025
Authors
Nascimento, R; Ferreira, T; Rocha, CD; Filipe, V; Silva, MF; Veiga, G; Rocha, LF;
Publication
J. Intell. Robotic Syst.
Abstract
Quality inspection inspection systems are critical for maintaining product integrity. Being a repetitive task, when performed by operators only, it can be slow and error-prone. This paper introduces an automated inspection system for quality assessment in casting aluminum parts resorting to a robotic system. The method comprises two processes: filing detection and hole inspection. For filing detection, five deep learning modes were trained. These models include an object detector and four instance segmentation models: YOLOv8, YOLOv8n-seg, YOLOv8s-seg, YOLOv8m-seg, and Mask R-CNN, respectively. Among these, YOLOv8s-seg exhibited the best overall performance, achieving a recall rate of 98.10%, critical for minimizing false negatives and yielding the best overall results. Alongside, the system inspects holes, utilizing image processing techniques like template-matching and blob detection, achieving a 97.30% accuracy and a 2.67% Percentage of Wrong Classifications. The system improves inspection precision and efficiency while supporting sustainability and ergonomic standards, reducing material waste and reducing operator fatigue. © The Author(s) 2025.
2025
Authors
Cordeiro, A; Rocha, LF; Boaventura-Cunha, J; Pires, EJS; Souza, JP;
Publication
Computers & Industrial Engineering
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.