2025
Authors
Sousa, J; Brandau, B; Hemschik, R; Darabi, R; Sousa, A; Reis, LP; Brueckner, F; Reis, A;
Publication
ADDITIVE MANUFACTURING
Abstract
Bringing AI models from digital to real-world applications presents significant challenges due to the complexity and variability of physical environments, often leading to unexpected model behaviors. We propose a framework that learns to translate images into control actions by modeling multimodal real-time data and system dynamics. This end-to-end controller offers enhanced explainability and robustness, making it well suited for complex manufacturing processes. This end-to-end framework differs from traditional approaches that rely on manually engineered features by learning complex relationships directly from raw data. Labels are only required during training to define the observable feature to be optimized. This adaptability significantly reduces development time and enhances scalability across varying conditions. This approach was tested in the Directed Energy Deposition (L-DED) process, a laser-based metal additive manufacturing technique that produces near-net-shape parts with exceptional energy efficiency and flexibility in both geometry and material selection. L-DED is inherently complex, involving multiphysics interactions, multiscale phenomena, and dynamic behaviors, which make modeling and optimization difficult. Effective control is crucial to ensure part quality in this dynamic environment. To address these challenges, we introduce Joint Embedding Multimodal Alignment with Sparse Identification of Nonlinear Dynamics for control (JEMA-SINDYc). It combines an image-based JEMA monitoring model, which predicts the melt pool size using only the on-axis sensor with labels provided by the off-axis camera, and dynamic modeling using SINDYc, which acts as a World Model by capturing system dynamics within the embedding space. Together, these components enable the development of an advanced controller trained via Behavioral Cloning. This approach improves part quality by minimizing porosity and reducing deformation. Thin-walled cylindrical parts were produced to validate and compare this approach with other control strategies, including both open-loop and JEMA-PID. This framework improves the reliability of AI-driven manufacturing and enhances control of complex industrial processes, potentially enabling wider adoption of the process.
2025
Authors
Monteiro, F; Sousa, A;
Publication
EUROPEAN JOURNAL OF ENGINEERING EDUCATION
Abstract
Engineering is considered important in solving unsustainability. However, it is a complex problem that must be viewed, analysed and studied from various perspectives and taking with the contribution of various areas of knowledge. This work studied the use of interdisciplinarity as a contribution to interconnect ethics and sustainability with technical-scientific contents of electrical engineering. The research intended to use interdisciplinarity to help engineering students recognise that engineering is not ethically neutral, and that, therefore, the problems (and solutions) must also be analysed from an ethical and sustainability perspective. A framework was developed, and a pedagogical activity using interdisciplinarity was applied. Results show that, after the activity, students recognise that ethical values influence calculations in the area of electrical installations; and move from a single view to identify different alternatives, perspectives, motivations and multiple objectives. This leads to studying more alternatives and hopefully better overall technical solutions.
2025
Authors
Matos, DM; Costa, P; Sobreira, H; Valente, A; Lima, J;
Publication
INTERNATIONAL JOURNAL OF INTELLIGENT ROBOTICS AND APPLICATIONS
Abstract
With the increasing adoption of mobile robots for transporting components across several locations in industries, congestion problems appear if the movement of these robots is not correctly planned. This paper introduces a fleet management system where a central agent coordinates, plans, and supervises the fleet, mitigating the risk of deadlocks and addressing issues related to delays, deviations between the planned paths and reality, and delays in communication. The system uses the TEA* graph-based path planning algorithm to plan the paths of each agent. In conjunction with the TEA* algorithm, the concepts of supervision and graph-based environment representation are introduced. The system is based on ROS framework and allows each robot to maintain its autonomy, particularly in control and localization, while aligning its path with the plan from the central agent. The effectiveness of the proposed fleet manager is demonstrated in a real scenario where robots operate on a shop floor, showing its successful implementation.
2025
Authors
Benhanifia, A; Ben Cheikh, Z; Oliveira, PM; Valente, A; Lima, J;
Publication
INTELLIGENT SYSTEMS WITH APPLICATIONS
Abstract
Predictive maintenance (PDM) is emerging as a strong transformative tool within Industry 4.0, enabling significant improvements in the sustainability and efficiency of manufacturing processes. This in-depth literature review, which follows the PRISMA 2020 framework, examines how PDM is being implemented in several areas of the manufacturing industry, focusing on how it is taking advantage of technological advances such as artificial intelligence (AI) and the Internet of Things (IoT). The presented in-depth evaluation of the technological principles, implementation methods, economic consequences, and operational improvements based on academic and industrial sources and new innovations is performed. According to the studies, integrating CDM can significantly increase machine uptime and reliability while reducing maintenance costs. In addition, the transition to PDM systems that use real-time data to predict faults and plan maintenance more accurately holds out promising prospects. However, there are still gaps in the overall methodologies for measuring the return on investment of PDM implementations, suggesting an essential research direction.
2025
Authors
Abreu, A; Oliveira, DD; Vinagre, I; Cavouras, D; Alves, JA; Pereira, AI; Lima, J; Moreira, FTC;
Publication
CHEMOSENSORS
Abstract
The detection of glucose is crucial for diagnosing diseases such as diabetes and enables timely medical intervention. In this study, a disposable enzymatic screen-printed electrode electrochemical biosensor enhanced with machine learning (ML) for quantifying glucose in serum is presented. The platinum working surface was modified by chemical adsorption with biographene (BGr) and glucose oxidase, and the enzyme was encapsulated in polydopamine (PDP) by electropolymerisation. Electrochemical characterisation and morphological analysis (scanning and transmission electron microscopy) confirmed the modifications. Calibration curves in Cormay serum (CS) and selectivity tests with chronoamperometry were used to evaluate the biosensor's performance. Non-linear ML regression algorithms for modelling glucose concentration and calibration parameters were tested to find the best-fit model for accurate predictions. The biosensor with BGr and enzyme encapsulation showed excellent performance with a linear range of 0.75-40 mM, a correlation of 0.988, and a detection limit of 0.078 mM. Of the algorithms tested, the decision tree accurately predicted calibration parameters and achieved a coefficient of determination above 0.9 for most metrics. Multilayer perceptron models effectively predicted glucose concentration with a coefficient of determination of 0.828, demonstrating the synergy of biosensor technology and ML for reliable glucose detection.
2025
Authors
Pimentel, GO; dos Santos, MF; Lima, J; Mercorelli, P; Fernandes, FM;
Publication
SENSORS
Abstract
This paper focuses on the modeling, control, and simulation of an over-actuated hexacopter tilt-rotor (HTR). This configuration implies that two of the six actuators are independently tilted using servomotors, which provide high maneuverability and reliability. This approach is predicted to maintain zero pitch throughout the trajectory and is expected to improve the aircraft's steering accuracy. This arrangement is particularly beneficial for precision agriculture (PA) applications where accurate monitoring and management of crops are critical. The enhanced maneuverability allows for precise navigation in complex vineyard environments, enabling the unmanned aerial vehicle (UAV) to perform tasks such as aerial imaging and crop health monitoring. The employed control architecture consists of cascaded proportional (P)-proportional, integral and derivative (PID) controllers using the successive loop closure (SLC) method on the five controlled degrees of freedom (DoFs). Simulated results using Gazebo demonstrate that the HTR achieves stability and maneuverability throughout the flight path, significantly improving precision agriculture practices. Furthermore, a comparison of the HTR with a traditional hexacopter validates the proposed approach.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.