Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CRIIS

2024

Model Predictive Control for B-Spline Trajectory Tracking in Omnidirectional Robots

Authors
Carvalho, JP; Moreira, AP; Aguiar, AP;

Publication
2024 7TH IBERIAN ROBOTICS CONFERENCE, ROBOT 2024

Abstract
In the field of intelligent autonomous robots, integrating optimization techniques with classical control theory methods for mobile robot control is an increasingly prominent area of research. The combination enhances robots' ability to perform their tasks more efficiently, reliably, and safely. This paper addresses the development of a path and motion planning framework for omnidirectional robots, leveraging B-Splines and Trajectory Tracking with Model Predictive Control. The proposed framework is evaluated through software-in-the-loop tests using two distinct dynamical models and sets of hyperparameters. Final validation is conducted by implementing the framework within a ROS environment and performing field tests on a robotic platform. The results demonstrate that the robot can reliably track trajectories at its actuation limits, and the proposed framework enables the robot to increase its velocity up to 50% when compared to a PID path-following controller.

2024

Comparison of Pallet Detection and Location Using COTS Sensors and AI Based Applications

Authors
Caldana, D; Carvalho, R; Rebelo, PM; Silva, MF; Costa, P; Sobreira, H; Cruz, N;

Publication
ROBOT 2023: SIXTH IBERIAN ROBOTICS CONFERENCE ADVANCES IN ROBOTICS, VOL 1

Abstract
Autonomous Mobile Robots (AMR) are seeing an increased introduction in distinct areas of daily life. Recently, their use has expanded to intralogistics, where forklift type AMR are applied in many situations handling pallets and loading/unloading them into trucks. One of the these vehicles requirements, is that they are able to correctly identify the location and status of pallets, so that the forklifts AMR can insert the forks in the right place. Recently, some commercial sensors have appeared in the market for this purpose. Given these considerations, this paper presents a comparison of the performance of two different approaches for pallet detection: using a commercial off-the-shelf (COTS) sensor and a custom developed application based on Artificial Intelligence algorithms applied to an RGB-D camera, where both the RGB and depth data are used to estimate the position of the pallet pockets.

2024

Hybrid Localization Solution for Autonomous Mobile Robots in Complex Environments

Authors
Rebelo, PM; Valente, A; Oliveira, PM; Sobreira, H; Costa, P;

Publication
ROBOT 2023: SIXTH IBERIAN ROBOTICS CONFERENCE ADVANCES IN ROBOTICS, VOL 1

Abstract
Mobile robot platforms capable of operating safely and accurately in dynamic environments can have a multitude of applications, ranging from simple delivery tasks to advanced assembly operations. These abilities rely heavily on a robust navigation stack, which requires stable and accurate pose estimations within the environment. The wide range of AMR's applications and the characteristics of multiple industrial environments (indoor and outdoor) have led to the development of a flexible and robust robot software architecture that allows the fusion of different data sensors in real time. In this way, and in terms of localization, AMRs have greater precision when it comes to uncontrolled and unstructured environments. These complex environments feature a variety of dynamic and unpredictable elements, such as variable layouts, limited visibility, unstructured spaces, and uncertain terrain. This paper presents a multi-localization system for industrial mobile robots in complex and dynamic industrial scenarios, based on different localization technologies and methods that can interact together and simultaneously.

2024

Control of a Mobile Robot Through VDA5050 Standard

Authors
Brilhante, M; Rebelo, PM; Oliveira, PM; Sobreira, H; Costa, P;

Publication
ROBOT 2023: SIXTH IBERIAN ROBOTICS CONFERENCE ADVANCES IN ROBOTICS, VOL 1

Abstract
Since creating universally capable robots is challenging for a single manufacturer, a diverse fleet of robots from various manufacturers is utilized. However, these heterogeneous fleets encounter communication and interoperability issues. As a result, there is a growing need for a standardized interface that is capable of communicating, controlling and managing a diverse fleet without these interoperability issues. This paper presents a translation software module capable of controlling an autonomous mobile robot and communicating with a ROS-based robot fleet manager using the VDA5050 Standard and exchanging information via the MQTT communication protocol, aiming at flexibility and control across different robot brands. The effectiveness of the software in controlling a mobile robot via the VDA5050 standard was demonstrated by the results. It accurately analysed data from the Robot Fleet Manager, converted it into VDA 5050 JSON messages and skilfully translated it back into ROS messages. The robot's behavior remained consistent before and after the VDA5050 implementation.

2024

Direct-Steered-DRRT*: A 3D RRT-based planner improvement

Authors
Lopes, MS; Silva, MF; de Souza, JPC; Costa, P;

Publication
2024 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC

Abstract
The advancement of technology has led to a growing demand for autonomy across various sectors. A key aspect of achieving autonomous navigation through intricate environments is path planning, initially confined to 2D spaces but rapidly evolving to address the complexities of 3D environments. Despite the widespread adoption of RRT-based planners, their inherent lack of optimality has encouraged researchers to find refinements. This paper transposes an existing algorithm developed for 2D environments to 3D, leveraging a heuristic to optimize the generated paths in terms of path length, memory consumed, and execution time. Along with this scalability to 3D scenarios, a modification was introduced that trades off some execution time for a substantial improvement in path length. The results obtained from a series of simulated experimental tests prove the efficacy of the proposed method in 3D environments, demonstrating reduced memory consumption and execution time compared to conventional approaches.

2024

Integration of a Free Navigation Autonomous Mobile Robot into a Graph and ROS-Based Robot Fleet Manager

Authors
Rebelo, PM; Féliz, MC; Oliveira, PM; Sobreira, H; Costa, P;

Publication
ROBOT 2023: SIXTH IBERIAN ROBOTICS CONFERENCE ADVANCES IN ROBOTICS, VOL 1

Abstract
The need for interoperability between robots of different brands and navigation typologies, graph-based and free navigation, is increasing and this has led to the development of a new approach to empower a graph and ROS-based robot fleet manager for the management of free navigation mobile robots. For this implementation and validation, in real tests, the OMRON LD-90 was the mobile robot platform chosen, which has the particularity of not allowing the execution of a waypoints sequence. A software module was developed to exchange data between a non-ROS-based mobile robot and a specific ROS-based robot fleet manager. This is an approach applicable to any free navigation Autonomous Mobile Robot (AMR) with the necessary adaptations regarding the information provided by the different robot brands.

  • 28
  • 377