2025
Authors
Lopes, D; Pereira, T; Gonçalves, A; Cunha, F; Lopes, F; Antunes, J; Santos, V; Coutinho, F; Barreiros, J; Duraes, J; Santos, P; Simoes, F; Ferreira, P; Freitas, EDCD; Trovao, JPF; Ferreira, JP; Ferreira, NMF;
Publication
APPLIED SCIENCES-BASEL
Abstract
This paper presents the development of fleet management software for mobile robots, including AGV and AMR technologies, within the scope of a case study from the GreenAuto project. The system was designed to integrate position and status data from different robots, unifying this information into a single map. To achieve this, a web-based platform was developed to allow the simultaneous, real-time visualization of all robots in operation. However, the main challenge of this research lies in the heterogeneity of the fleet, which comprises robots of different makes and models from various manufacturers, each using distinct data formats. The proposed approach addresses this by facilitating fleet monitoring and management, ensuring a greater efficiency and coordination in the robot movement. The results demonstrate that the platform improves the traceability and operational supervision, promoting the optimized management of mobile robots. It is concluded that the proposed solution contributes to industrial automation by providing an intuitive and centralized interface, enabling future expansions for new functionalities and the integration with other emerging technologies. The proposed system demonstrated efficiency in updating and supervising operations, with an average latency of 120 ms for task status updates and an interface refresh rate of less than 1 s, enabling near real-time supervision and facilitating operational decision-making.
2025
Authors
Pacheco, FD; Rebelo, PM; Sousa, RB; Silva, MF; Mendonça, HS;
Publication
2025 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC
Abstract
Radio-Frequency IDentification (RFID) technologies automate the identification of objects and persons, having several applications in retail, manufacturing, and intralogistics sectors. Several works explore the application of RFID systems in robotics and intralogistics, focusing on locating robots, tags, and inventory management. This paper addresses the challenge of intralogistics cargo trolleys communicating their characteristics to an autonomous mobile robot through an RFID system. The robot must know the trolley's relative pose to avoid collisions with the surroundings. As a result, the passive tag on the cargo communicates information to the robot, including the base footprint of the trolley. The proposed RFID system includes the development of a controller board to interact with the frontend integrated circuit of an external antenna onboard the industrial mobile robot. Experimental results assess the system's readability distance in two distinct environments and with two different antenna modules. All the code and documentation are available in a public repository.
2025
Authors
Joana Pereira; André Baltazar; Isabel Pinheiro; Daniel Queirós da Silva; Jorge M. L. Frazão; Filipe Neves Dos Santos;
Publication
2025 IEEE 30th International Conference on Emerging Technologies and Factory Automation (ETFA)
Abstract
2025
Authors
Carneiro, GA; Aubry, TJ; Cunha, A; Radeva, P; Sousa, JJ;
Publication
COMPUTERS AND ELECTRONICS IN AGRICULTURE
Abstract
Precision Agriculture (PA) has emerged as an approach to optimize production, comprise different technology and principles focusing on how to improve agricultural production. Currently, one of the main foundations of PA is the use of artificial intelligence, through deep learning (DL) algorithms. By processing large volumes of complex data, DL enhances decision-making and boosts farming efficiency. However, these methods are hungry for annotated data, which contrasts with the scarce availability of annotated agricultural data and the costs of annotation. Self-supervised learning (SSL) has emerged as a solution to tackle the lack of annotated agricultural data. This study presents a review of the application of SSL methods to computer vision tasks in the agricultural context. The aim is to create a starting point for professionals and scientists who intend to apply these methods using agricultural data. The results of 33 studies found in the literature are discussed, highlighting their pros and cons. In most of the studies, SSL outperformed its supervised counterpart, using datasets from 4000 to 60,000 samples. Potential directions for improving future research are suggested.
2025
Authors
Daniel Lopes; Manuel F. Silva; Luís F. Rocha; Vítor Filipe;
Publication
2025 IEEE 30th International Conference on Emerging Technologies and Factory Automation (ETFA)
Abstract
2024
Authors
Deguchi, T; Baltazar, AR; dos Santos, FN; Mendonça, H;
Publication
ROBOT 2023: SIXTH IBERIAN ROBOTICS CONFERENCE, VOL 2
Abstract
Since the advent of agriculture, humans have considered phytopharmaceutical products to control pests and reduce losses in farming. Sometimes some of these products, such pesticides, can potentially harm the soil life. In the literature there is evidence that AI and image processing can have a positive contribution to reduce phytopharmaceutical losses, when used in variable rate sprayers. However, it is possible to improve the existing sprayer system's precision, accuracy, and mechanical aspects. This work proposes spraying solution called GraDeS solution (Grape Detection Sprayer). GraDeS solution is a sprayer with two degrees of freedom, controlled by a AI-based algorithm to precisely treat grape bunches diseases. The experiments with the designed sprayer showed two key points. First, the deep learning algorithm recognized and tracked grape bunches. Even with structure movement and bunch covering, the algorithm employs several strategies to keep track of the discovered objects. Second, the robotic sprayer can improve precision in specified areas, such as exclusively spraying grape bunches. Because of the structure's reduced size, the system can be used in medium and small robots.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.