2025
Authors
Ferreira, L; Sandim, ASD; Lopes, DA; Sousa, JJ; Lopes, DMM; Silva, MECM; Padua, L;
Publication
LAND
Abstract
Accurate biomass estimation is important for forest management and climate change mitigation. This study evaluates the potential of using LiDAR (Light Detection and Ranging) data, acquired through Unmanned Aerial Vehicles (UAVs), for estimating above-ground and total biomass in Eucalyptus globulus and Pinus pinaster stands in central and northern Portugal. The acquired LiDAR point clouds were processed to extract structural metrics such as canopy height, crown area, canopy density, and volume. A multistep variable selection procedure was applied to reduce collinearity and select the most informative predictors. Multiple linear regression (MLR) models were developed and validated using field inventory data. Random Forest (RF) models were also tested for E. globulus, enabling a comparative evaluation between parametric and machine learning regression models. The results show that the 25th height percentile, canopy cover density at two meters, and height variance demonstrated an accurate biomass estimation for E. globulus, with coefficients of determination (R2) varying between 0.86 for MLR and 0.90 for RF. Although RF demonstrated a similar predictive performance, MLR presented advantages in terms of interpretability and computational efficiency. For P. pinaster, only MLR was applied due to the limited number of field data, yet R2 exceeded 0.80. Although absolute errors were higher for Pinus pinaster due to greater biomass variability, relative performance remained consistent across species. The results demonstrate the feasibility and efficiency of UAV LiDAR point cloud data for stand-level biomass estimation, providing simple and effective models for biomass estimation in these two species.
2025
Authors
Adao, F; Pádua, L; Sousa, JJ;
Publication
AGRICULTURE-BASEL
Abstract
Soil degradation is a critical challenge to global agricultural sustainability, driven by intensive land use, unsustainable farming practices, and climate change. Conventional soil monitoring techniques often rely on invasive sampling methods, which can be labor-intensive, disruptive, and limited in spatial coverage. In contrast, non-invasive geophysical techniques, particularly ground-penetrating radar, have gained attention as tools for assessing soil properties. However, an assessment of ground-penetrating radar's applications in agricultural soil research-particularly for detecting soil structural changes related to degradation-remains undetermined. To address this issue, a systematic literature review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 guidelines. A search was conducted across Scopus and Web of Science databases, as well as relevant review articles and study reference lists, up to 31 December 2024. This process resulted in 86 potentially relevant studies, of which 24 met the eligibility criteria and were included in the final review. The analysis revealed that the ground-penetrating radar allows the detection of structural changes associated with tillage practices and heavy machinery traffic in agricultural lands, namely topsoil disintegration and soil compaction, both of which are important indicators of soil degradation. These variations are reflected in changes in electrical permittivity and reflectivity, particularly above the tillage horizon. These shifts are associated with lower soil water content, increased soil homogeneity, and heightened wave reflectivity at the upper boundary of compacted soil. The latter is linked to density contrasts and waterlogging above this layer. Additionally, ground-penetrating radar has demonstrated its potential in mapping alterations in electrical permittivity related to preferential water flow pathways, detecting shifts in soil organic carbon distribution, identifying disruptions in root systems due to tillage, and assessing soil conditions potentially affected by excessive fertilization in iron oxide-rich soils. Future research should focus on refining methodologies to improve the ground-penetrating radar's ability to quantify soil degradation processes with greater accuracy. In particular, there is a need for standardized experimental protocols to evaluate the effects of monocultures on soil fertility, assess the impact of excessive fertilization effects on soil acidity, and integrate ground-penetrating radar with complementary geophysical and remote sensing techniques for a holistic approach to soil health monitoring.
2025
Authors
Portela, F; Sousa, JJ; Araújo-Paredes, C; Peres, E; Morais, R; Pádua, L;
Publication
AGRONOMY-BASEL
Abstract
Monitoring vineyard diseases such as downy mildew (Plasmopara viticola) is important for viticulture, enabling an early intervention and optimized disease management. This is crucial for disease monitoring, and the use of high-spatial-resolution multispectral data from unmanned aerial vehicles (UAVs) can allow to for a better understanding of disease progression. This study explores the application of UAV-based multispectral data for monitoring downy mildew infection in vineyards through multi-temporal analysis. This study was conducted in a vineyard plot in the Vinho Verde region (Portugal), where 84 grapevines were monitored, half of which received phytosanitary treatments while the other half were left untreated in this way during the growing season. Seven UAV flights were performed across different phenological stages to assess the effects of infection using spectral bands, vegetation indices, and morphometric parameters. The results indicate that downy mildew affects canopy area, height, and volume, restricting the vegetative growth. Spectral analysis reveals that infected grapevines show increased reflectance in the visible and red-edge bands and a progressive decline in near-infrared (NIR) reflectance. Several vegetation indices demonstrated a suitable response to the infection, with some of them being capable of detecting early-stage symptoms, while vegetation indices using red edge and NIR allowed us to track disease progression. These results highlight the potential of UAV-based multi-temporal remote sensing as a tool for vineyard disease monitoring, supporting precision viticulture and the assessment of phytosanitary treatment effectiveness.
2025
Authors
Vieira, D; Oliveira, M; Arrais, R; Melo, P;
Publication
SENSORS
Abstract
Continuous Integration and Continuous Deployment are known methodologies for software development that increase the overall quality of the development process. Several robotic software repositories make use of CI/CD tools as an aid to development. However, very few CI pipelines take advantage of using cloud computing to run simulations. Here, a CI pipeline is proposed that takes advantage of such features, applied to the development of ATOM, a ROS-based application capable of carrying out the calibration of generalized robotic systems. The proposed pipeline uses GitHub Actions as a CI/CD engine, AWS RoboMaker as a service for running simulations on the cloud and Rigel as a tool to both containerize ATOM and execute the tests. In addition, a static analysis and unit testing component is implemented with the use of Codacy. The creation of the pipeline was successful, and it was concluded that it constitutes a valuable tool for the development of ATOM and a blueprint for the creation of similar pipelines for other robotic systems.
2025
Authors
Gameiro, T; Pereira, T; Moghadaspoura, H; Di Giorgio, F; Viegas, C; Ferreira, N; Ferreira, J; Soares, S; Valente, A;
Publication
ALGORITHMS
Abstract
The autonomous navigation of unmanned ground vehicles (UGVs) in unstructured environments, such as agricultural or forestry settings, has been the subject of extensive research by various investigators. The navigation capability of a UGV in unstructured environments requires considering numerous factors, including the quality of data reception that allows reliable interpretation of what the UGV perceives in a given environment, as well as the use these data to control the UGV's navigation. This article aims to study different PID control algorithms to enable autonomous navigation on a robotic platform. The robotic platform consists of a forestry tractor, used for forest cleaning tasks, which was converted into a UGV through the integration of sensors. Using sensor data, the UGV's position and orientation are obtained and utilized for navigation by inputting these data into a PID control algorithm. The correct choice of PID control algorithm involved the study, analysis, and implementation of different controllers, leading to the conclusion that the Vector Field control algorithm demonstrated better performance compared to the others studied and implemented in this paper.
2025
Authors
Gonçalves, A; Pereira, T; Lopes, D; Cunha, F; Lopes, F; Coutinho, F; Barreiros, J; Durães, J; Santos, P; Simões, F; Ferreira, P; Freitas, DC; Trovão, F; Santos, V; Ferreira, P; Ferreira, M;
Publication
Automation
Abstract
This paper presents a method for position correction in collaborative robots, applied to a case study in an industrial environment. The case study is aligned with the GreenAuto project and aims to optimize industrial processes through the integration of various hardware elements. The case study focuses on tightening a specific number of nuts onto bolts located on a partition plate, referred to as “Cloison”, which is mounted on commercial vans produced by Stellantis, to secure the plate. The main challenge lies in deviations that may occur in the plate during its assembly process, leading to uncertainties in its fastening to the vehicles. To address this and optimize the process, a collaborative robot was integrated with a 3D vision system and a screwdriving system. By using the 3D vision system, it is possible to determine the bolts’ positions and adjust them within the robot’s frame of reference, enabling the screwdriving system to tighten the nuts accurately. Thus, the proposed method aims to integrate these different systems to tighten the nuts effectively, regardless of the deviations that may arise in the plate during assembly. © 2025 by the authors.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.