2024
Authors
Ramos, M; Azevedo, J; Kingsbury, K; Pereira, J; Esteves, T; Macedo, R; Paulo, J;
Publication
PROCEEDINGS OF THE VLDB ENDOWMENT
Abstract
We present LAZYFS, a new fault injection tool that simplifies the debugging and reproduction of complex data durability bugs experienced by databases, key-value stores, and other data-centric systems in crashes. Our tool simulates persistence properties of POSIX file systems (e.g., operations ordering and atomicity) and enables users to inject lost and torn write faults with a precise and controlled approach. Further, it provides profiling information about the system's operations flow and persisted data, enabling users to better understand the root cause of errors. We use LAZYFS to study seven important systems: PostgreSQL, etcd, Zookeeper, Redis, LevelDB, PebblesDB, and Lightning Network. Our fault injection campaign shows that LAZYFS automates and facilitates the reproduction of five known bug reports containing manual and complex reproducibility steps. Further, it aids in understanding and reproducing seven ambiguous bugs reported by users. Finally, LAZYFS is used to find eight new bugs, which lead to data loss, corruption, and unavailability.
2025
Authors
Brito C.; Pina N.; Esteves T.; Vitorino R.; Cunha I.; Paulo J.;
Publication
Transportation Engineering
Abstract
Cities worldwide have agreed on ambitious goals regarding carbon neutrality. To do so, policymakers seek ways to foster smarter and cleaner transportation solutions. However, citizens lack awareness of their carbon footprint and of greener mobility alternatives such as public transports. With this, three main challenges emerge: (i) increase users’ awareness regarding their carbon footprint, (ii) provide personalized recommendations and incentives for using sustainable transportation alternatives and, (iii) guarantee that any personal data collected from the user is kept private. This paper addresses these challenges by proposing a new methodology. Created under the FranchetAI project, the methodology combines federated Artificial Intelligence (AI) and Greenhouse Gas (GHG) estimation models to calculate the carbon footprint of users when choosing different transportation modes (e.g., foot, car, bus). Through a mobile application that keeps the privacy of users’ personal information, the project aims at providing detailed reports to inform citizens about their impact on the environment, and an incentive program to promote the usage of more sustainable mobility alternatives.
2025
Authors
, C; Gião, B; Amaro, S; Matos, M; Paulo, JT; Esteves, T;
Publication
Proceedings of the 3rd Workshop on eBPF and Kernel Extensions
Abstract
As different eBPF libraries keep emerging, developers are left with the hard task of choosing the right one. Until now, this choice has been based on functional requirements (e.g., programming language support, development workflow), while quantitative metrics have been left out of the equation. In this paper, we argue that efficiency metrics such as performance, resource usage, and data collection fidelity also need to be considered for making an informed decision. We show it through an experimental study comparing five popular libraries: bpftrace, BCC, libbpf, ebpf-go, and Aya. For each, we implement three representative eBPF-based tools and evaluate them under different storage I/O workloads. Our results show that each library has its own strengths and weaknesses, as their specific features lead to distinct trade-offs across the selected efficiency metrics. These results further motivate experimental studies to increase the community's understanding of the eBPF ecosystem. © 2025 Elsevier B.V., All rights reserved.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.