2019
Authors
Santos, R; Basto, J; Alcalá, SGS; Frazzon, E; Azevedo, A;
Publication
Proceedings of the International Conference on Industrial Engineering and Operations Management
Abstract
The industry faces more and more the challenge of deploying and taking advantage of evidence-based strategic decisions to enhance profit gain. In this research, the possibility of having a fully integrated system composed by a simulator and an IoT platform with the capability of collecting real-time data from the shop floor and returning performance indicators to support decision making is evaluated. The suggested approach involves a Manufacturing Executing System (MES) producing a production schedule, an IoT Platform composed by a message broker and a real-time database, a Simulator including simulation software and a wrapper, and a user application serving as an interface between the user and the IoT Platform and Simulator integrated system. A detailed analysis of the functionalities and integration of the Simulator and the IoT Platform will also be explored. To evaluate the approach, one use case of a production line in the automotive industry is used. The application of the integrated IoT Simulation system permits its validation and consequent future work. © 2019, IEOM Society International.
2021
Authors
Santos, R; Toscano, C; de Sousa, JP;
Publication
IFAC PAPERSONLINE
Abstract
The principles and tools made available by the Industry 4.0, smart factories, or the Internet of Things (IoT), along with the adoption of more comprehensive simulation models, can significantly help the industry to face the current, huge external and internal challenges. This paper presents a new simulation-based approach to support decision making in the design and operational management of manufacturing systems. This approach is used to evaluate different layouts and resources allocation, and help managing operations, by integrating a simulation software with real-time data collected from the production assets through an IoT platform. The developed methodology uses a digital representation of the real production system (that may be viewed as a form of a digital twin) to assess different production scenarios. A set of key performance indicators (e.g. productivity) provided by the simulation can be used by the Manufacturing Execution System (MES) to generate production schedules. The developed approach was implemented and assessed in a real case study, showing its robustness and application potential. Its extension to other industrial contexts and sectors seems, therefore, quite promising. Copyright (C) 2021 The Authors.
2023
Authors
Piqueiro, H; Gomes, R; Santos, R; de Sousa, JP;
Publication
SUSTAINABILITY
Abstract
To design and deploy their supply chains, companies must naturally take quite different decisions, some being strategic or tactical, and others of an operational nature. This work resulted in a decision support system for optimising a biomass supply chain in Portugal, allowing a more efficient operations management, and enhancing the design process. Uncertainty and variability in the biomass supply chain is a critical issue that needs to be considered in the production planning of bioenergy plants. A simulation/optimisation framework was developed to support decision-making, by combining plans generated by a resource allocation optimisation model with the simulation of disruptive wildfire scenarios in the forest biomass supply chain. Different scenarios have been generated to address uncertainty and variability in the quantity and quality of raw materials in the different supply nodes. Computational results show that this simulation/optimisation approach can have a significant impact in the operations efficiency, particularly when disruptions occur closer to the end of the planning horizon. The approach seems to be easily scalable and easy to extend to other sectors.
2022
Authors
Piqueiro, H; de Sousa, JP; Santos, R; Gomes, R;
Publication
Proceedings of the International Conference on Industrial Engineering and Operations Management
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.