Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Ricardo Germano Reis

2018

Redundant robot localization system based in wireless sensor network

Authors
Reis, R; Mendes, J; dos Santos, FN; Morais, R; Ferraz, N; Santos, L; Sousa, A;

Publication
2018 IEEE International Conference on Autonomous Robot Systems and Competitions, ICARSC 2018, Torres Vedras, Portugal, April 25-27, 2018

Abstract
Localization and Mapping of autonomous robots in an harsh and unstable environment such as a steep slope vineyard is a challenging research topic. Dead Reckoning systems can fail due to the harsh conditions of the terrain, and the Global Position System can be affected by noise or even be unavailable. Agriculture is moving towards precision agriculture, with advanced monitoring systems and wireless sensor networks. These systems and wireless sensors are installed in the crop field and can be considered relevant landmarks for robot localization. In this paper the distance accuracy provided by bluetooth based sensors is deeply studied and characterized. It is considered a multi antenna receiver bluetooth system and obtained the transfer functions (from Received Signal Strength Indication (RSSI) to distance estimation) for each set of antenna and sensors. The performance of this technology is compared against Time-of-flight based technologies (Pozyx). The obtained results show that the agricultural wireless sensors can be used as redundant artificial landmarks for localization purposes. Besides, the RSSI characterization allowed to improve the previous results of our Beacon Mapping Procedure (BMP) required for accurate and reliable localization systems. © 2018 IEEE.

2018

Path planning aware of soil compaction for steep slope vineyards

Authors
Santos, L; Ferraz, N; Neves Dos Santos, F; Mendes, J; Morais, R; Costa, P; Reis, R;

Publication
18th IEEE International Conference on Autonomous Robot Systems and Competitions, ICARSC 2018

Abstract
The intensive use of agricultural machinery is promoting the soil compaction. The use of agricultural robots or autonomous machinery can intensify this problem, due its capacity to replicate the same trajectories. One of the possible strategies to minimize the effects of soil compaction is to control agricultural traffic instead of common random traffic. Since geo-referencing systems are present in almost all field operations it is possible to optimize trajectories to avoid to damage the crop and intensify the soil compaction. The controlled agricultural traffic on farms will not only increase production capacity, the incomes as well as the quality of the soil. In this work a novel approach based on A-star algorithm is proposed to reduce soil compaction in steep slope vineyards. © 2018 IEEE.