2024
Authors
Hora, J; Marta, CFB; Camanho, A; Galvao, T;
Publication
INFORMATION SYSTEMS AND TECHNOLOGIES, VOL 4, WORLDCIST 2023
Abstract
This study estimates alighting stops and transfers from entry-only Automatic Fare Collection (AFC) data. The methodology adopted includes two main steps: an implementation of the Trip Chaining Method (TCM) to estimate the alighting stops from AFC records and the subsequent application of criteria for the identification of transfers. For each pair of consecutive AFC records on the same smart card, a transfer is identified considering a threshold for the walking distance, a threshold for the time required to perform an activity, and the validation of different boarding routes. This methodology was applied to the case study of Porto, Portugal, considering all trips performed by a set of 19999 smart cards over one year. The results of this methodology allied with visualization techniques allowed to study Origin-Destination (OD) patterns by type of day, seasonally, and by user frequency, each analyzed at the stop level and at the geographic area level.
2024
Authors
Silva, E; Ramos, AG; Moura, A;
Publication
EXPERT SYSTEMS WITH APPLICATIONS
Abstract
The implementation of novel regulatory and technical requirements for the distribution of vehicle axle weights in road freight transport introduces a new set of constraints on vehicle routing. Until now, axle weight distribution in determining the load plan for freight transport units has been overlooked in the vehicle routing process. Compliance with these axle weight constraints has become paramount for road freight transport companies, since noncompliance with the axle weight distribution legislation translates into heavy fines. This work aims to provide a tool capable of generating cargo loading plans and routing sequences for a palletised cargo distribution problem. The problem addressed integrates the capacitated vehicle routing problem with time window and the two-dimensional loading problem with load balance constraints. Two integrative solution approaches are proposed, one giving greater importance to the routing and the other prioritising the loading. In addition, a novel MILP model is proposed for the 2D pallet loading problem with load-balance constraints that take advantage of the standard dimension of the pallets. Extensive computational experiments were performed with a set of well-known literature benchmark instances, extended to incorporate additional features. The computational results show the effectiveness of the proposed approaches.
2024
Authors
Soares, R; Marques, A; Amorim, P; Parragh, SN;
Publication
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH
Abstract
The practical relevance and challenging nature of the Vehicle Routing Problem (VRP) have motivated the Operations Research community to consider different practical requirements and problem variants throughout the years. However, businesses still face increasingly specific and complex transportation re-quirements that need to be tackled, one of them being synchronisation. No literature contextualises syn-chronisation among other types of problem aspects of the VRP, increasing ambiguity in the nomenclature used by the community. The contributions of this paper originate from a literature review and are three-fold. First, new conceptual and classification schemas are proposed to analyse literature and re-organise different interdependencies that arise in routing decisions. Secondly, a modelling framework is presented based on the proposed schemas. Finally, an extensive literature review identifies future research gaps and opportunities in the field of VRPs with synchronisation.(c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
2024
Authors
Morim, A; Campuzano, G; Amorim, P; Mes, M; Lalla-Ruiz, E;
Publication
EXPERT SYSTEMS WITH APPLICATIONS
Abstract
Following the widespread interest of both the scientific community and companies in using autonomous vehicles to perform deliveries, we propose the 'Drone-Assisted Vehicle Routing Problem with Robot Stations' (VRPD-RS), a problem that combines two concepts studied in the autonomous vehicles literature: truck-drone tandems and robot stations. We model the VRPD-RS as a mixed-integer linear program (MILP) for two different objectives, the makespan and operational costs, and analyze the impact of adding trucks, drones, and robots to the delivery fleet. Given the computational complexity of the problem, we propose a General Variable Neighborhood Search (GVNS) metaheuristic to solve more realistic instances within reasonable computational times. Results show that, for small instances of 10 customers, where the solver obtains optimal solutions for almost all cases, the GVNS presents solutions with gaps of 0.7% to the solver for the makespan objective and gaps of 0.0% for the operational costs variant. For instances of up to 50 customers, the GVNS presents improvements of 21.5% for the makespan objective and 8.0% for the operational costs variant. Furthermore, we compare the GVNS with a Simulated Annealing (SA) metaheuristic, showing that the GVNS outperforms the SA for the whole set of instances and in more efficient computational times. Accordingly, the results highlight that including an additional drone in a truck-drone tandem increases delivery speed alongside a reduction in operational costs. Moreover, robot stations proved to be a useful delivery element as they were activated in almost every studied scenario.
2024
Authors
Peixoto, A; Martins, S; Amorim, P; Holzapfel, A;
Publication
INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH
Abstract
In several online retail contexts, such as grocery retailing, customers have to be present at the moment of delivery, that is, an attended home delivery service is in place. This requirement adds new challenges to this channel, often leading to narrow profitability. From an operations perspective, this service is performed with the retailer offering multiple time slots for the customer to choose from. Retailers target a cost-efficient delivery process that also accounts for customers' preferences by properly managing the options to show to customers, that is, time slot management. This study analyzes a dynamic slotting problem, that is, choosing the best slots to show for each customer, which is close to many practical cases pursuing a customer service orientation. We study two new strategies to improve customer service while satisfying cost-efficiency goals: (i) enforcing a constraint on the minimum number or percentage of slots to show to customers and (ii) integrating multiple days when tackling this challenging problem. Our results show under which conditions these proposed strategies can lead to win-win situations for both customer service and profit.
2024
Authors
Neves Moreira, F; Amorim, P;
Publication
INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS
Abstract
Omnichannel retailers are reinventing stores to meet the growing demand of the online channel. Several retailers now use stores as supporting distribution centers to offer quicker Buy-Online-Pickup-In-Store (BOPS) and Ship-From-Store (SFS) services. They resort to in-store picking to serve online orders using existing assets. However, in-store picking operations require picker carts traveling through store aisles, competing for store space, and possibly harming the offline customer experience. To learn picking policies that acknowledge interactions between pickers and offline customers, we formalize a new problem called Dynamic In-store Picker Routing Problem (diPRP). This problem considers a picker that tries to pick online orders (seeking) while minimizing customer encounters (hiding) - preserving the offline customer experience. We model the problem as a Markov Decision Process (MDP) and solve it using a hybrid solution approach comprising mathematical programming and reinforcement learning components. Computational experiments on synthetic instances suggest that the algorithm converges to efficient policies. We apply our solution approach in the context of a large European retailer to assess the proposed policies regarding the number of orders picked and customers encountered. The learned policies are also tested in six different retail settings, demonstrating the flexibility of the proposed approach. Our work suggests that retailers should be able to scale the in-store picking of online orders without jeopardizing the experience of offline customers. The policies learned using the proposed solution approach reduced the number of customer encounters by up to 50%, compared to policies solely focused on picking orders. Thus, to pursue omnichannel strategies that adequately trade-off operational efficiency and customer experience, retailers cannot rely on actual simplistic picking strategies, such as choosing the shortest possible route.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.