Cookies Policy
We use cookies to improve our site and your experience. By continuing to browse our site you accept our cookie policy. Find out More
Close
  • Menu
Publications

Publications by CEGI

2019

A co-evolutionary matheuristic for the car rental capacity-pricing stochastic problem

Authors
Oliveira, BB; Carravilla, MA; Oliveira, JF; Costa, AM;

Publication
European Journal of Operational Research

Abstract

2019

Data mining based framework to assess solution quality for the rectangular 2D strip-packing problem

Authors
Júnior, AN; Silva, E; Gomes, AM; Soares, C; Oliveira, JF;

Publication
Expert Syst. Appl.

Abstract

2019

Data mining based framework to assess solution quality for the rectangular 2D strip-packing problem

Authors
Neuenfeldt Junior, A; Silva, E; Gomes, M; Soares, C; Oliveira, JF;

Publication
Expert Systems with Applications

Abstract
In this paper, we explore the use of reference values (predictors) for the optimal objective function value of hard combinatorial optimization problems, instead of bounds, obtained by data mining techniques, and that may be used to assess the quality of heuristic solutions for the problem. With this purpose, we resort to the rectangular two-dimensional strip-packing problem (2D-SPP), which can be found in many industrial contexts. Mostly this problem is solved by heuristic methods, which provide good solutions. However, heuristic approaches do not guarantee optimality, and lower bounds are generally used to give information on the solution quality, in particular, the area lower bound. But this bound has a severe accuracy problem. Therefore, we propose a data mining-based framework capable of assessing the quality of heuristic solutions for the 2D-SPP. A regression model was fitted by comparing the strip height solutions obtained with the bottom-left-fill heuristic and 19 predictors provided by problem characteristics. Random forest was selected as the data mining technique with the best level of generalisation for the problem, and 30,000 problem instances were generated to represent different 2D-SPP variations found in real-world applications. Height predictions for new problem instances can be found in the regression model fitted. In the computational experimentation, we demonstrate that the data mining-based framework proposed is consistent, opening the doors for its application to finding predictions for other combinatorial optimisation problems, in particular, other cutting and packing problems. However, how to use a reference value instead of a bound, has still a large room for discussion and innovative ideas. Some directions for the use of reference values as a stopping criterion in search algorithms are also provided. © 2018 Elsevier Ltd

2019

A Benders Decomposition Algorithm for the Berth Allocation Problem

Authors
Barbosa, F; Oliveira, JF; Carravilla, MA; Curcio, EF;

Publication
Springer Proceedings in Mathematics and Statistics

Abstract
In this paper we present a Benders decomposition approach for the Berth Allocation Problem (BAP). Benders decomposition is a cutting plane method that has been widely used for solving large-scale mixed integer linear optimization problems. On the other hand, the Berth Allocation Problem is a NP-hard and large-scale problem that has been gaining relevance both from the practical and scientific points of view. In this work we address the discrete and dynamic version of the problem, and develop a new decomposition approach and apply it to a reformulation of the BAP based on the Heterogeneous Vehicle Routing Problem with Time Windows (HVRPTW) model. In a discrete and dynamic BAP each berth can moor one vessel at a time, and the vessels are not all available to moor at the beginning of the planning horizon (there is an availability time window). Computational tests are run to compare the proposed Benders Decomposition with a state-of-the-art commercial solver. © 2019, Springer Nature Switzerland AG.

2019

Maximizing the expected number of transplants in kidney exchange programs with branch-and-price

Authors
Alvelos, F; Klimentova, X; Viana, A;

Publication
Annals of Operations Research

Abstract
In this paper, we propose a branch-and-price approach for solving the problem of maximizing the expected number of transplants in Kidney Exchange Programs (KEPs). In these programs, the decision on which transplants will be conducted is usually made with the support of optimization models with the assumption that all operations will take place. However, after a plan of transplants is defined, a pair may leave the KEP or a more accurate compatibility evaluation exam may invalidate a transplant. To model these possible events we consider probabilities of failure of vertices and of arcs and the objective of maximizing the expected number of transplants. The proposed approach is based on the so-called cycle formulation, where decision variables are associated with cycles. Built on the concept of type of cycle a branch-and-price algorithm is conceived. One subproblem is defined for each type of cycle. We present computational results of the proposed branch-and-price algorithm and compare them with solving directly the cycle formulation (with a general purpose mixed integer programming solver—CPLEX) showing that the proposed approach is the only one suitable for larger instances. © 2017 Springer Science+Business Media, LLC

2019

A service design approach to healthcare innovation: from decision-making to sense-making and institutional change

Authors
Patrício, L; Grenha Teixeira, J; Vink, J;

Publication
AMS Review

Abstract

  • 1
  • 103