2025
Authors
Gallan, S; Alkire, L; Teixeira, JG; Heinonen, K; Fisk, P;
Publication
AMS Review
Abstract
Amidst an urgent need for sustainability, novel approaches are required to address environmental challenges. In this context, biomimicry offers a promising logic for catalyzing nature’s wisdom to address this complexity. The purpose of this research is to (1) establish a biomimetic understanding and vocabulary for sustainability and (2) apply biomimicry to upframe service ecosystems as a foundation for sustainability. Our research question is: How can the principles of natural ecosystems inform and enhance the sustainability of service ecosystems? The findings highlight upframed service ecosystems as embodying a set of practices that (1) promote mutualistic interactions, (2) build on local biotic and abiotic components supporting emergence processes, (3) leverage (bio)diversity to build resilience, (4) foster resource sharing for regeneration, and (5) bridge individual roles to optimize the community rather than individual well-being. Our upframed definition of a service ecosystem is a system of resource-integrating biotic actors and abiotic resources functioning according to ecocentric principles for mutualistic and regenerative value creation. The discussion emphasizes the implications of this upframed definition for sustainability practices, advocating for a shift in understanding and interacting with service ecosystems. It emphasizes the potential for immediate mutualistic benefits and long-term regenerative impacts. © Academy of Marketing Science 2025.
2025
Authors
de Matos, MA; Patrício, L; Teixeira, JG;
Publication
JOURNAL OF SERVICE THEORY AND PRACTICE
Abstract
Purpose Citizen engagement plays a crucial role in transitioning to sustainable service ecosystems. While customer engagement has been extensively studied in service research, citizen engagement has received significantly less attention. By synthesizing customer and citizen engagement literatures, this study develops an integrated framework to conceptually clarify the dual role of customer-citizen engagement for sustainability. Design/methodology/approach This study builds on a systematic literature review of customer engagement literature in service research and citizen engagement literature. Following a theory synthesis approach, we qualitatively analyzed 126 articles to develop an integrated conceptual framework of customer-citizen engagement for sustainability through a process of abductive reasoning. Findings The analysis showed that customer engagement and citizen engagement literatures have developed mostly separately but provide complementary views. While the customer engagement literature has traditionally focused on business-related facets, such as engagement with brands, the citizen perspective broadens the engagement scope to other citizens, communities and society in general. The integrated framework highlights the interplay between citizen and customer roles and the impact of their relationships with multiple objects on sustainability. Originality/value This integrated framework contributes to advancing our understanding of customer-citizen engagement, broadening the scope of subject-object engagement by examining the interplay between these roles in how they engage for sustainability and moving beyond the traditional dyadic perspective to a multi-level perspective of service ecosystems. This framework also enables the development of a set of research directions to advance the understanding of engagement in sustainable service ecosystems.
2025
Authors
Amorim-Lopes, M; Cruz-Gomes, S; Doldi, E; Almada-Lobo, B;
Publication
HEALTH POLICY
Abstract
The specialization of Health Human Resources (HHR) is increasingly recognized as essential for addressing evolving healthcare demands. This paper presents a comprehensive policy framework for assisting with the implementation of Clinical Nurse Specialist (CNS) roles at the national or regional level, integrating key dimensions including barriers and enablers, regulation and governance, education and training requirements, career development, workforce planning, and economic analysis. The framework was applied to the implementation of CNS roles in Portugal, resulting in the issuance of a decree-law by the government. Our findings demonstrate that the economic analysis step was critical in addressing concerns from government authorities and health system funders regarding the potential budgetary impact of CNS implementation. By providing evidence-based projections of costs and benefits, the economic analysis facilitated smoother negotiations and consensus-building among stakeholders, including nursing unions. Furthermore, the integration of workforce planning ensured the alignment of educational capacity with workforce needs, thus avoiding potential implementation bottlenecks. The application of the framework also revealed important feedback relationships between its dimensions, highlighting the interdependent nature of the implementation process. This dynamic approach, which adapts to real-time feedback and stakeholder input, underscores the necessity of a holistic and iterative strategy for successful CNS role integration. The insights gained from the Portuguese case underscore the utility of this policy framework in guiding the implementation of advanced nursing roles in diverse healthcare contexts.
2025
Authors
Oliveira, MA; Guimaraes, L; Borges, JL; Almada Lobo, B;
Publication
INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH
Abstract
Ensuring process quality in modern manufacturing is increasingly challenging due to the complexity of production processes and reliance on skilled operators, which can lead to suboptimal solutions and poor quality. To address these challenges, we introduce a novel, unsupervised, robust, nonparametric control chart for Phase II monitoring. This chart tracks the degradation of a quality characteristic using a condition index that captures mean and scale shifts without relying on assumptions, offering high flexibility and adaptability. Comparative studies with state-of-the-art nonparametric schemes demonstrate faster detection capabilities and competitive accuracy across various scenarios. We validate our approach through its application in the glass container production process, showcasing its effectiveness in monitoring multiple defective rates. Although tested on defective rates, the methodology is adaptable to any quantifiable quality characteristic.
2025
Authors
Pahr, A; Grunow, M; Amorim, P;
Publication
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH
Abstract
Port wine stocks ameliorate during storage, facilitating product differentiation according to age. This induces a trade-off between immediate revenues and further maturation. Varying climate conditions in the limited supply region lead to stochastic purchase prices for wine grapes. Decision makers must integrate recurring purchasing, production, and issuance decisions. Because stocks from different age classes can be blended to create final products, the solution space increases exponentially in the number of age classes. We model the problem of managing port wine inventory as a Markov decision process, considering decay as an additional source of uncertainty. For small problems, we derive general management strategies from the long-run behavior of the optimal policy. Our solution approach for otherwise intractable large problems, therefore, first aggregates age classes to create a tractable problem representation. We then use machine learning to train tree-based decision rules that reproduce the optimal aggregated policy and the enclosed management strategies. The derived rules are scaled back to solve the original problem. Learning from the aggregated optimum outperforms benchmark rules by 21.4% in annual profits (while leaving a 2.8%-gap to an upper bound). For an industry case, we obtain a 17.4%-improvement over current practices. Our research provides distinct strategies for how producers can mitigate climate risks. The purchasing policy dynamically adapts to climate-dependent price fluctuations. Uncertainties are met with lower production of younger products, whereas strategic surpluses of older stocks ensure high production of older products. Moreover, a wide spread in the age classes used for blending reduces decay risk exposure.
2025
Authors
Alves, GA; Tavares, R; Amorim, P; Camargo, VCB;
Publication
COMPUTERS & INDUSTRIAL ENGINEERING
Abstract
The textile industry is a complex and dynamic system where structured decision-making processes are essential for efficient supply chain management. In this context, mathematical programming models offer a powerful tool for modeling and optimizing the textile supply chain. This systematic review explores the application of mathematical programming models, including linear programming, nonlinear programming, stochastic programming, robust optimization, fuzzy programming, and multi-objective programming, in optimizing the textile supply chain. The review categorizes and analyzes 163 studies across the textile manufacturing stages, from fiber production to integrated supply chains. Key results reveal the utility of these models in solving a wide range of decision-making problems, such as blending fibers, production planning, scheduling orders, cutting patterns, transportation optimization, network design, and supplier selection, considering the challenges found in the textile sector. Analyzing those models, we point out that sustainability considerations, such as environmental and social aspects, remain underexplored and present significant opportunities for future research. In addition, this study emphasizes the importance of incorporating multi-objective approaches and addressing uncertainties in decision-making to advance sustainable and efficient textile supply chain management.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.