Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Paulo Soares Santos

2023

Spectral Analysis Methods for Improved Resolution and Sensitivity: Enhancing SPR and LSPR Optical Fiber Sensing

Authors
Dos Santos, PSS; Mendes, JP; Dias, B; Perez-Juste, J; De Almeida, JMMM; Pastoriza-Santos, I; Coelho, LCC;

Publication
SENSORS

Abstract
Biochemical-chemical sensing with plasmonic sensors is widely performed by tracking the responses of surface plasmonic resonance peaks to changes in the medium. Interestingly, consistent sensitivity and resolution improvements have been demonstrated for gold nanoparticles by analyzing other spectral features, such as spectral inflection points or peak curvatures. Nevertheless, such studies were only conducted on planar platforms and were restricted to gold nanoparticles. In this work, such methodologies are explored and expanded to plasmonic optical fibers. Thus, we study-experimentally and theoretically-the optical responses of optical fiber-doped gold or silver nanospheres and optical fibers coated with continuous gold or silver thin films. Both experimental and numerical results are analyzed with differentiation methods, using total variation regularization to effectively minimize noise amplification propagation. Consistent resolution improvements of up to 2.2x for both types of plasmonic fibers are found, demonstrating that deploying such analysis with any plasmonic optical fiber sensors can lead to sensing resolution improvements.

2023

Low-Cost Wideband Interrogation System for Fiber Optic Sensors

Authors
Araujo, JCC; dos Santos, PSS; Dias, B; de Almeida, JMMM; Coelho, LCC;

Publication
IEEE SENSORS JOURNAL

Abstract
The interrogation of optical fiber sensors (OFS) often relies on complex devices such as optical spectrum analyzers (OSAs) that are expensive with low portability and mainly suited to laboratory measurements or dedicated interrogation systems with limited spectral range. An interrogation unit was designed and fabricated using a photodetector combined with a micro-electromechanical system and a Fabry-Perot interferometer (MEMS-FPI) working as a tunable filter with a response in the range 1350-1650 nm. Deconvolution techniques were applied to mitigate the effect of the broadband response of the tunable filter on the measured signal. The performance of the unit was validated with the interrogation of long-period fiber gratings (LPFGs) as temperature, refractive index (RI), and relative humidity (RH) sensors. For the temperature, a sensitivity of 0.135 +/- 0.007 nm/degrees C was obtained, which showed a 4.9% relative error when compared to the same measurement with an OSA. For the RI, a sensitivity of 147 +/- 11 nm/RIU was obtained, which showed a relative error lower than 1% when compared to the OSA. For the humidity, sensitivities of 0.742 +/- 0.005 and 0.056 +/- 0.006 nm/%RH were obtained, with errors of 2.75% and 6.67%, respectively, when compared to a commercial dedicated interrogation system. The low relative error obtained when compared to commercial alternatives shows the potential of the system to be used in real-time applications that require portability, low cost, energy efficiency, and capacity for integration in dedicated systems.

2023

Tuning bimetallic Au@Ag nanorods Localized Surface Plasmon Resonance on side-polished optical fiber sensing configurations at near-infrared wavelengths

Authors
dos Santos, SS; Mendes, J; de Almeida, MMM; Pastoriza Santos, I; Coelho, CC;

Publication
Proceedings of SPIE - The International Society for Optical Engineering

Abstract
The increasing demand for precise chemical and biological sensing has led to the development of highly efficient plasmonic optical fiber sensors. Therefore, it is essential to optimize and match the operating wavelength region of both the optical fiber configuration and localized surface plasmon resonance of nanoparticles (NPs). This can be achieved by developing NPs that can reach resonance at near-infrared wavelengths, where refractive index sensitivity is enhanced, and silica optical fibers have lower losses. High aspect-ratio bimetallic Au@Ag nanorods and different side-polished fiber structures are tested using numerical simulations. The selected optical fiber configuration was based on a side-polished fiber with a 1 mm polished section. It is compared power losses and power at the NP interface for two configurations: a step-index single-mode fiber (SMF) with core/cladding diameters of 8.2/125 µm and a multimode graded-index fiber (GIF) with 62.5/125 µm at various polishing depths. The results showed that the best performance for both configurations was achieved at similar polishing depths, namely 59.5 and 55.2 µm for the SMF and GIF, respectively. The optical impact of retardation effects due to the proximity with the fiber structure were also observed, which caused a reduction in sensitivity from 1750 nm/RIU to 1500 nm/RIU and a red-shift of around 70 nm. © 2023 SPIE.

2024

From localized to propagating surface plasmon resonances in Au nanoparticle-coated optical fiber sensors and its implications in biosensing

Authors
dos Santos, PSS; Mendes, JP; Perez Juste, J; Pastoriza Santos, I; De Almeida, JMMM; Coelho, LCC;

Publication
PHOTONICS RESEARCH

Abstract
Nanoparticle-based plasmonic optical fiber sensors can exhibit high sensing performance, in terms of refractive index sensitivities (RISs). However, a comprehensive understanding of the factors governing the RIS in this type of sensor remains limited, with existing reports often overlooking the presence of surface plasmon resonance (SPR) phenomena in nanoparticle (NP) assemblies and attributing high RIS to plasmonic coupling or waveguiding effects. Herein, using plasmonic optical fiber sensors based on spherical Au nanoparticles, we investigate the basis of their enhanced RIS, both experimentally and theoretically. The bulk behavior of assembled Au NPs on the optical fiber was investigated using an effective medium approximation (EMA), specifically the gradient effective medium approximation (GEMA). Our findings demonstrate that the Au-coated optical fibers can support the localized surface plasmon resonance (LSPR) as well as SPR in particular scenarios. Interestingly, we found that the nanoparticle sizes and surface coverage dictate which effect takes precedence in determining the RIS of the fiber. Experimental data, in line with numerical simulations, revealed that increasing the Au NP diameter from 20 to 90 nm (15% surface coverage) led to an RIS increase from 135 to 6998 nm/RIU due to a transition from LSPR to SPR behavior. Likewise, increasing the surface coverage of the fiber from 9% to 15% with 90 nm Au nanoparticles resulted in an increase in RIS from 1297 (LSPR) to 6998 nm/RIU (SPR). Hence, we ascribe the exceptional performance of these plasmonic optical fibers primary to SPR effects, as evidenced by the nonlinear RIS behavior. The outstanding RIS of these plasmonic optical fibers was further demonstrated in the detection of thrombin protein, achieving very low limits of detection. These findings support broader applications of high-performance NP-based plasmonic optical fiber sensors in areas such as biomedical diagnostics, environmental monitoring, and chemical analysis. (c) 2024 Chinese Laser Press

2024

Integrated All-In-Silica Optofluidic Platform Based on Microbubble Resonator and Femtosecond Laser Written Surface Waveguide

Authors
Amorim, VA; Frigenti, G; Baldini, F; Berneschi, S; Farnesi, D; Jorge, PAS; Maia, JM; Conti, GN; dos Santos, PSS; Marques, PVS;

Publication
IEEE SENSORS JOURNAL

Abstract
Optical microbubble resonators (OMBRs)-understood as localized thin wall bulges induced in silica microcapillaries-are gaining an ever-growing interest in microfluidic sensing applications due to their capability to sustain whispering gallery modes (WGMs) and confine the fluidic sample within their own hollow-core microcavity. Currently, most applications use an external tapered optical fiber for coupling light to the resonator. This arrangement is known to be fragile and prone to vibrations. In this work, an alternative approach, based on coupling OMBR with a femtosecond (fs) laser-written optical waveguides, integrated at the surface of fused silica substrate, is proposed. In this configuration, a stable and robust final structure is accomplished by gluing the two ends of the microcapillary, on which the OMBR is made, to the substrate. The OMBR quality factors, measured at the excitation wavelength of 1540 nm, show values close to 10(4) in the case of a water-filled cavity, with a maximum coupling efficiency of up to 6.5%. Finally, the operation of the integrated optical devices as refractometers is demonstrated by delivering different solutions with successively increasing concentrations of NaCl inside the OMBR. An average sensitivity of 45 nm/RIU is obtained, yielding a resolution of 4.4x10(-5) RIU, creating the potential for this platform to be applied in chemical/biochemical sensing.

2024

Plasmonic nanoparticle sensors: current progress, challenges, and future prospects

Authors
Kant, K; Beeram, R; Cao, Y; dos Santos, PSS; González-Cabaleiro, L; Garcia-Lojo, D; Guo, H; Joung, YJ; Kothadiya, S; Lafuente, M; Leong, YX; Liu, YY; Liu, YX; Moram, SSB; Mahasivam, S; Maniappan, S; Quesada-González, D; Raj, D; Weerathunge, P; Xia, XY; Yu, Q; Abalde-Cela, S; Alvarez-Puebla, RA; Bardhan, R; Bansal, V; Choo, J; Coelho, LCC; de Almeida, JMMM; Gómez-Graña, S; Grzelczak, M; Herves, P; Kumar, J; Lohmueller, T; Merkoçi, A; Montaño-Priede, JL; Ling, XY; Mallada, R; Pérez-Juste, J; Pina, MP; Singamaneni, S; Soma, VR; Sun, MT; Tian, LM; Wang, JF; Polavarapu, L; Santos, IP;

Publication
NANOSCALE HORIZONS

Abstract
Plasmonic nanoparticles (NPs) have played a significant role in the evolution of modern nanoscience and nanotechnology in terms of colloidal synthesis, general understanding of nanocrystal growth mechanisms, and their impact in a wide range of applications. They exhibit strong visible colors due to localized surface plasmon resonance (LSPR) that depends on their size, shape, composition, and the surrounding dielectric environment. Under resonant excitation, the LSPR of plasmonic NPs leads to a strong field enhancement near their surfaces and thus enhances various light-matter interactions. These unique optical properties of plasmonic NPs have been used to design chemical and biological sensors. Over the last few decades, colloidal plasmonic NPs have been greatly exploited in sensing applications through LSPR shifts (colorimetry), surface-enhanced Raman scattering, surface-enhanced fluorescence, and chiroptical activity. Although colloidal plasmonic NPs have emerged at the forefront of nanobiosensors, there are still several important challenges to be addressed for the realization of plasmonic NP-based sensor kits for routine use in daily life. In this comprehensive review, researchers of different disciplines (colloidal and analytical chemistry, biology, physics, and medicine) have joined together to summarize the past, present, and future of plasmonic NP-based sensors in terms of different sensing platforms, understanding of the sensing mechanisms, different chemical and biological analytes, and the expected future technologies. This review is expected to guide the researchers currently working in this field and inspire future generations of scientists to join this compelling research field and its branches. This comprehensive review summarizes the past, present, and future of plasmonic NP-based sensors in terms of different sensing platforms, different chemical and biological analytes, and the expected future technologies.

  • 3
  • 4