Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Diana Filipa Guimarães

2025

From waste to resource: LIBS methodology development for rapid quality assessment of recycled wood

Authors
Capela, D; Pessanha, S; Lopes, T; Cavaco, R; Teixeira, J; Ferreira, MFS; Magalhaes, P; Jorge, PAS; Silva, NA; Guimaraes, D;

Publication
JOURNAL OF HAZARDOUS MATERIALS

Abstract
Management and reuse of wood waste can be a challenging process due to the frequent presence of hazardous contaminants. Conventional detection methods are often limited by the need for excessive sample preparation and lengthy and expensive analysis. Laser-induced Breakdown Spectroscopy (LIBS) is a rapid and micro- destructive technique that can be a promising alternative, providing in-situ and real-time analysis, with minimal to no sample preparation required. In this study, LIBS imaging was used to analyze wood waste samples to determine the presence of contaminants such as As, Ba, Cd, Cr, Cu, Hg, Pb, Sb, and Ti. For this analysis, a methodology based on detecting three lines per element was developed, offering a screening method that can be easily adapted to perform qualitative analysis in industrial contexts with high throughput operations. For the LIBS experimental lines selection, control and reference samples, and a pilot set of 10 wood wastes were analysed. Results were validated by two different X-ray Fluorescence (XRF) systems, an imaging XRF and a handheld XRF, that provided spatial elemental information and spectral information, respectively. The results obtained highlighted LIBS ability to detect highly contaminated samples and the importance of using a 3-line criteria to mitigate spectral interferences and discard outliers. To increase the dataset, a LIBS large-scale study was performed using 100 samples. These results were only corroborated by the XRF-handheld system, as it provides a faster alternative. In particular cases, ICP-MS analysis was also performed. The success rates achieved, mostly above 88 %, confirm the capability of LIBS to perform this analysis, contributing to more sustainable waste management practices and facilitating the quick identifi- cation and remediation of contaminated materials.

  • 7
  • 7