Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by João Catalão

2016

Analysis and Control of Single-Phase Converters for Integration of Small-Scaled Renewable Energy Sources into the Power Grid

Authors
Mehrasa, M; Rezanejhad, M; Pouresmaeil, E; Catalao, JPS; Zabihi, S;

Publication
2016 7TH POWER ELECTRONICS AND DRIVE SYSTEMS & TECHNOLOGIES CONFERENCE (PEDSTC)

Abstract
A comprehensive dynamic model based on Direct-Quadrature (DQ) rotating frame is proposed in this paper that is used along with a capability curve (CC) based on the active and reactive power to control a grid-connected single-phase voltage-source inverter (SPVSI). With the proposed dynamic model, a droop-passivity based controller can be designed for the grid-connected inverter in the presence of nonlinear loads. Stability analysis of the proposed control technique is also discussed in the paper as well as design principles. Moreover, an accurate performance area of SPVSI active and reactive power in dynamic transitions is achieved using the CC. Furthermore, an effective harmonic compensation scheme along with a proper active and reactive power sharing algorithm are performed by a well-designed reference waveform generation process. Performance of the grid-connected SPVSI, under the proposed controller, is thoroughly evaluated in the Matlab/Simulink environment.

2016

Enhanced Forecasting Approach for Electricity Market Prices and Wind Power Data Series in the Short-Term

Authors
Osorio, GJ; Goncalves, JNDL; Lujano Rojas, JM; Catalao, JPS;

Publication
ENERGIES

Abstract
The uncertainty and variability in electricity market price (EMP) signals and players' behavior, as well as in renewable power generation, especially wind power, pose considerable challenges. Hence, enhancement of forecasting approaches is required for all electricity market players to deal with the non-stationary and stochastic nature of such time series, making it possible to accurately support their decisions in a competitive environment with lower forecasting error and with an acceptable computational time. As previously published methodologies have shown, hybrid approaches are good candidates to overcome most of the previous concerns about time-series forecasting. In this sense, this paper proposes an enhanced hybrid approach composed of an innovative combination of wavelet transform (WT), differential evolutionary particle swarm optimization (DEEPSO), and an adaptive neuro-fuzzy inference system (ANFIS) to forecast EMP signals in different electricity markets and wind power in Portugal, in the short-term, considering only historical data. Test results are provided by comparing with other reported studies, demonstrating the proficiency of the proposed hybrid approach in a real environment.

2016

Multi-Objective Reconfiguration of Radial Distribution Systems Using Reliability Indices

Authors
Paterakis, NG; Mazza, A; Santos, SF; Erdinc, O; Chicco, G; Bakirtzis, AG; Catalao, JPS;

Publication
IEEE TRANSACTIONS ON POWER SYSTEMS

Abstract
This paper deals with the distribution network reconfiguration problem in a multi-objective scope, aiming to determine the optimal radial configuration by means of minimizing the active power losses and a set of commonly used reliability indices formulated with reference to the number of customers. The indices are developed in a way consistent with a mixed-integer linear programming (MILP) approach. A key contribution of the paper is the efficient implementation of the epsilon-constraint method using lexicographic optimization in order to solve the multi-objective optimization problem. After the Pareto efficient solution set is generated, the resulting configurations are evaluated using a backward/forward sweep load-flow algorithm to verify that the solutions obtained are both non-dominated and feasible. Since the epsilon-constraint method generates the Pareto front but does not incorporate decision maker (DM) preferences, a multi-attribute decision making procedure, namely, the technique for order preference by similarity to ideal solution (TOPSIS) method, is used in order to rank the obtained solutions according to the DM preferences, facilitating the final selection. The applicability of the proposed method is assessed on a classical test system and on a practical distribution system.

2017

Two-Tier Reactive Power and Voltage Control Strategy Based on ARMA Renewable Power Forecasting Models

Authors
Lu, JL; Wang, B; Ren, H; Zhao, DQ; Wang, F; Shafie khah, M; Catalao, JPS;

Publication
ENERGIES

Abstract
To address the static voltage stability issue and suppress the voltage fluctuation caused by the increasing integration of wind farms and solar photovoltaic (PV) power plants, a two-tier reactive power and voltage control strategy based on ARMA power forecasting models for wind and solar plants is proposed in this paper. Firstly, ARMA models are established to forecast the output of wind farms and solar PV plants. Secondly, the discrete equipment is pre-regulated based on the single-step prediction information from ARMA forecasting models according to the optimization result. Thirdly, a multi-objective optimization model is presented and solved by particle swarm optimization (PSO) according to the measured data and the proposed static voltage stability index. Finally, the IEEE14 bus system including a wind farm and solar PV plant is utilized to test the effectiveness of the proposed strategy. The results show that the proposed strategy can suppress voltage fluctuation and improve the static voltage stability under the condition of high penetration of renewables including wind and solar power.

2017

A Hybrid Anti-islanding Method for Inverter-Based Distributed Generation

Authors
Rokrok, E; Shafie khah, M; Karshenas, HR; Rokrok, E; Catalao, JPS;

Publication
TECHNOLOGICAL INNOVATION FOR SMART SYSTEMS

Abstract
Nowadays, high penetration of Distributed Generations (DG)s in power systems caused some protection issues. One of these issues is unintentional islanding. As regards IEEE 1547 standard, this situation must be recognized immediately, and DG must be separated from the load in less than 2 s. In this paper, to detection of islanding in an inverter-based distributed generation, a new hybrid method with high performance is proposed. In the proposed method, a primary detection of islanding is conducted by measuring the voltage harmonic distortion at the Point of Common Coupling (PCC), as well as comparing the variations to a specified threshold level. After this primary detection, a temporary reactive current signal is injected to the PCC by the inverter of DG, and its terminal voltage and frequency are measured. In the case of deviation of voltage or frequency from permissible range, definitive detection of islanding is determined. Simulation results indicate the efficiency and accuracy of the proposed detection method in different circumstances, especially for loads with the different quality factors.

2017

Risk-Based Bi-Level Model for Simultaneous Profit Maximization of a Smart Distribution Company and Electric Vehicle Parking Lot Owner

Authors
Sadati, SMB; Moshtagh, J; Shafie khah, M; Catalao, JPS;

Publication
ENERGIES

Abstract
In this paper, the effect of renewable energy resources (RERs), demand response (DR) programs and electric vehicles (EVs) is evaluated on the optimal operation of a smart distribution company (SDISCO) in the form of a new bi-level model. According to the existence of private electric vehicle parking lots (PLs) in the network, the aim of both levels is to maximize the profits of SDISCO and the PL owners. Furthermore, due to the uncertainty of RERs and EVs, the conditional value-at-risk (CVaR) method is applied in order to limit the risk of expected profit. The model is transformed into a linear single-level model by the Karush-Kuhn-Tucker (KKT) conditions and tested on the IEEE 33-bus distribution system over a 24-h period. The results show that by using a proper charging/discharging schedule, as well as a time of use program, SDISCO gains more profit. Furthermore, by increasing the risk aversion parameter, this profit is reduced.

  • 3
  • 165